Skip to main content
Log in

Large-scale optimization with the primal-dual column generation method

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation process. As recently presented in the literature, reductions in the number of calls to the oracle and in the CPU times are typically observed when compared to the standard column generation, which relies on extreme optimal dual solutions. However, these results are based on relatively small problems obtained from linear relaxations of combinatorial applications. In this paper, we investigate the behaviour of the PDCGM in a broader context, namely when solving large-scale convex optimization problems. We have selected applications that arise in important real-life contexts such as data analysis (multiple kernel learning problem), decision-making under uncertainty (two-stage stochastic programming problems) and telecommunication and transportation networks (multicommodity network flow problem). In the numerical experiments, we use publicly available benchmark instances to compare the performance of the PDCGM against recent results for different methods presented in the literature, which were the best available results to date. The analysis of these results suggests that the PDCGM offers an attractive alternative over specialized methods since it remains competitive in terms of number of iterations and CPU times even for large-scale optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altman, A., Kiwiel, K.C.: A note on some analytic center cutting plane methods for convex feasibility and minimization problems. Comput. Optim. Appl. 5(2), 175–180 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvelos, F., Valério de Carvalho, J.M.: An extended model and a column generation algorithm for the planar multicommodity flow problem. Networks 50(1), 3–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ariyawansa, K., Felt, A.J.: On a new collection of stochastic linear programming test problems. INFORMS J. Comput. 16(3), 291–299 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babonneau, F., Beltran, C., Haurie, A., Tadonki, C., Vial, J.P.: Proximal-ACCPM: a versatile oracle based optimisation method. In: Kontoghiorghes, E.J., Gatu, C., Amman, H., Rustem, B., Deissenberg, C., Farley, A., Gilli, M., Kendrick, D., Luenberger, D., Maes, R., Maros, I., Mulvey, J., Nagurney, A., Nielsen, S., Pau, L., Tse, E., Whinston, A. (eds.) Optimisation, Econometric and Financial Analysis, Advances in Computational Management Science, vol. 9, pp. 67–89. Springer, Berlin (2007)

    Chapter  Google Scholar 

  5. Babonneau, F., du Merle, O., Vial, J.P.: Solving large-scale linear multicommodity flow problems with an active set strategy and proximal-ACCPM. Oper. Res. 54(1), 184–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babonneau, F., Vial, J.P.: ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems. Math. Program. 120, 179–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the twenty-first international conference on Machine learning, ICML ’04, p. 6. ACM, New York (2004)

  8. Bahn, O., Merle, O., Goffin, J.L., Vial, J.P.: A cutting plane method from analytic centers for stochastic programming. Math. Program. 69, 45–73 (1995)

    MATH  Google Scholar 

  9. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Data Mining Techniques for the Life Sciences, pp. 223–239. Springer, Berlin (2010)

  10. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Birge, J.R., Dempster, M.A., Gassmann, H.I., Gunn, E.A., King, A.J., Wallace, S.W.: A standard input format for multiperiod stochastic linear programs. COAL Newsl. 17, 1–19 (1987)

    Google Scholar 

  12. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34(3), 384–392 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Comparison of bundle and classical column generation. Math. Program. 113, 299–344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Castro, J.: Solving difficult multicommodity problems with a specialized interior-point algorithm. Ann. Oper. Res. 124, 35–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Castro, J., Cuesta, J.: Improving an interior-point algorithm for multicommodity flows by quadratic regularizations. Networks 59(1), 117–131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dantzig, G.B.: Linear Programming and its Extensions. Princeton University Press, Princeton (1963)

    Google Scholar 

  18. Dantzig, G.B., Madansky, A.: On the solution of two-stage linear programs under uncertainty. In: Proceedings Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 165–176. University of California Press, Berkeley (1961)

  19. Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica 29(4), 767–778 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ellison, E., Mitra, G., Zverovich, V.: FortSP: A Stochastic Programming Solver. OptiRisk Systems, UK (2010)

    Google Scholar 

  22. Ford, L.R., Fulkerson, D.R.: A suggested computation for maximal multi-commodity network flows. Manag. Sci. 5(1), 97–101 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13, 117–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frangioni, A., Gallo, G.: A bundle type dual-ascent approach to linear multicommodity min-cost flow problems. INFORMS J. Comput. 11(4), 370–393 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Frangioni, A., Gendron, B.: A stabilized structured Dantzig–Wolfe decomposition method. Math. Program. 140(1), 45–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  27. Geoffrion, A.M.: Elements of large-scale mathematical programming Part I: concepts. Manag. Sci. 16(11), 652–675 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Geoffrion, A.M.: Elements of large-scale mathematical programming Part II: synthesis of algorithms and bibliography. Manag. Sci. 16(11), 676–691 (1970)

    Article  MathSciNet  Google Scholar 

  29. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goffin, J.L., Gondzio, J., Sarkissian, R., Vial, J.P.: Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Math. Program. 76, 131–154 (1996)

    MathSciNet  Google Scholar 

  31. Goffin, J.L., Haurie, A., Vial, J.P.: Decomposition and nondifferentiable optimization with the projective algorithm. Manag. Sci. 38(2), 284–302 (1992)

    Article  MATH  Google Scholar 

  32. Goffin, J.L., Luo, Z.Q., Ye, Y.: Complexity analysis of an interior cutting plane method for convex feasibility problems. SIAM J. Optim. 6(3), 638–652 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Goffin, J.L., Vial, J.P.: Convex nondifferentiable optimization: a survey focused on the analytic center cutting plane method. Optim. Methods Softw. 17, 805–868 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme. Math. Program. 83, 125–143 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gondzio, J., González-Brevis, P.: A new warmstarting strategy for the primal-dual column generation method. Math. Program. 152(1–2), 113–146 (2015). doi:10.1007/s10107-014-0779-8

  37. Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal-dual column generation technique. Eur. J. Oper. Res. 224(1), 41–51 (2013)

    Article  MATH  Google Scholar 

  38. Gondzio, J., Sarkissian, R.: Column generation with a primal-dual method. Technical Report 96.6, Logilab (1996)

  39. Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Springer, Berlin (1993)

    MATH  Google Scholar 

  41. Holmes, D.: A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS) (1995). Available in: http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html. Accessed April 2013

  42. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  43. Kelley, L.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  Google Scholar 

  44. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kiwiel, K.C.: Complexity of some cutting plane methods that use analytic centers. Math. Program. 74(1), 47–54 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

    MATH  Google Scholar 

  47. Larsson, T., Yuan, D.: An augmented lagrangian algorithm for large scale multicommodity routing. Comput. Optim. Appl. 27, 187–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995)

    Article  MATH  Google Scholar 

  49. Lemaréchal, C., Ouorou, A., Petrou, G.: A bundle-type algorithm for routing in telecommunication data networks. Comput. Optim. Appl. 44, 385–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Marsten, R.E., Hogan, W.W., Blankenship, J.W.: The boxstep method for large-scale optimization. Oper. Res. 23(3), 389–405 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Martinson, R.K., Tind, J.: An interior point method in Dantzig–Wolfe decomposition. Comput. Oper. Res. 26, 1195–1216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. McBride, R.D.: Progress made in solving the multicommodity flow problem. SIAM J. Optim. 8(4), 947–955 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discrete Math. 194(1–3), 229–237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mitchell, J.E., Borchers, B.: Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Ann. Oper. Res. 62, 253–276 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. Munari, P., Gondzio, J.: Using the primal-dual interior point algorithm within the branch-price-and-cut method. Comput. Oper. Res. 40(8), 2026–2036 (2013)

    Article  MathSciNet  Google Scholar 

  58. Neame, P.: Nonsmooth dual methods in integer programming. Ph.D. thesis, University of Melbourne, Department of Mathematics and Statistics (2000)

  59. Ouorou, A., Mahey, P., Vial, J.P.: A survey of algorithms for convex multicommodity flow problems. Manag. Sci. 46(1), 126–147 (2000)

    Article  MATH  Google Scholar 

  60. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008)

    MathSciNet  MATH  Google Scholar 

  61. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35, 309–333 (1986)

    Article  MATH  Google Scholar 

  62. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona, F., Binder, A., Gehl, C., Franc, V.: The SHOGUN machine learning toolbox. J. Mach. Learn. Res. 11, 1799–1802 (2010)

    MATH  Google Scholar 

  64. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Suzuki, T., Tomioka, R.: SpicyMKL: a fast algorithm for multiple kernel learning with thousands of kernels. Mach. Learn. 85, 77–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Van Slyke, R., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  67. Vanderbeck, F.: Implementing mixed integer column generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 331–358. Springer, USA (2005)

    Chapter  Google Scholar 

  68. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  69. Wentges, P.: Weighted Dantzig–Wolfe decomposition for linear mixed-integer programming. Int. Trans. Oper. Res. 4(2), 151–162 (1997)

    MATH  Google Scholar 

  70. Xu, Z., Jin, R., King, I., Lyu, M.: An extended level method for efficient multiple kernel learning. Adv. Neural Inf. Process. Syst. 21, 1825–1832 (2009)

    Google Scholar 

  71. Zien, A., Ong, C.S.: Multiclass multiple kernel learning. In: Proceedings of the 24th International Conference on Machine Learning. ICML ’07, pp. 1191–1198. ACM, New York (2007)

  72. Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition. Math. Program. Comput. 4, 211–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Victor Zverovich for kindly making available to us some of the TSSP instances included in this study. Also, we would like to thank Robert Gower for proofreading an early version of this paper. We are very thankful to the anonymous referees for their careful reading and the important suggestions made, which certainly helped to improve the first draft of this paper. Pablo González-Brevis has been supported by CONICYT, Chile through FONDECYT grant 11140521. Pedro Munari has been supported by FAPESP (São Paulo Research Foundation, Brazil) through grants 14/00939-8 and 14/50228-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Munari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondzio, J., González-Brevis, P. & Munari, P. Large-scale optimization with the primal-dual column generation method. Math. Prog. Comp. 8, 47–82 (2016). https://doi.org/10.1007/s12532-015-0090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-015-0090-6

Keywords

Mathematics Subject Classification

Navigation