Skip to main content
Log in

Friction Stir Processing of Cold-Sprayed High-Entropy Alloy Particles Reinforced Aluminum Matrix Composites: Corrosion and Wear Properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The high-entropy alloy particles reinforced 6061Al composite was prepared by cold spray (CS) and then modified by friction stir processing (FSP). The microstructure evolutions, corrosion, and wear behaviors of the composites were investigated. Results showed that numerous micro-pores and cracks were distributed in the Al matrix due to adiabatic shear instability and insufficient deformation of the deposited particles for CSed samples. The average size of uniformly distributed HEA particles was ~ 24 μm, and the geometric necessary dislocation (GND) density reached 17.1 × 1015 m−2 due to large plastic deformation during CS. Comparatively, the micro-pores and cracks were eliminated, and many fragmented HEA particles dispersed in the Al matrix with an average size of ~ 4 μm for FSPed sample. Note that the GND density reduced to 9.8 × 1015 m−2 due to dynamic recrystallization during FSP. The formation rate of the oxide film was gradually greater than that of the dissolution rate with the samples immersion in 3.5 wt% NaCl solution from 12 to 36 h, and the main corrosion mechanism was particle dissolution around micro-pores and pitting for CSed and FSPed samples, respectively. In the polarization process, the FSPed samples exhibited low corrosion tendency and high corrosion rate due to the dense and uniform microstructure, low GND density, and dispersed HEA particles. The FSPed samples had better wear resistance than the CSed samples at 25 °C and 200 °C. The dominant wear mechanisms of CSed and FSPed samples were abrasion at 25 °C, while the wear mechanisms of these samples were adhesion accompanied by abrasion at 200 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Abu-warda, M.D. López, B. González, E. Otero, M.D. Escalera-Rodríguez, S. Cruz, P. Rey, D. Verdera, M.V. Utrilla, Precipitation hardening and corrosion behavior of friction stir welded A6005-TiB2 nanocomposite. Met. Mater. Int. 27, 2867–2878 (2021). https://doi.org/10.1016/j.msea.2017.11.068

    Article  CAS  Google Scholar 

  2. Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Li, Y.B. Hu, X.G. Wang, Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering. J. Alloy. Compd. 806, 901–908 (2019). https://doi.org/10.1016/j.jallcom.2019.07.185

  3. J.P. Oliveira, J.F. Duarte, P. Inácio, N. Schell, R.M. Miranda, T.G. Santos, Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater. Des. 113, 311–318 (2017). https://doi.org/10.1016/j.matdes.2016.10.038

    Article  CAS  Google Scholar 

  4. M. Dixit, J.W. Newkirk, R.S. Mishra, Properties of friction stir-processed Al 1100-NiTi composite. Scripta Mater. 56, 541–544 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.006

  5. J.P. Oliveira, T.M. Curado, Z. Zeng, J.G. Lopes, E. Rossinyol, J.M. Park, N. Schell, F.M. Braz Fernandes, H.S. Kim, Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater. Des. 189, 108505 (2020). https://doi.org/10.1016/j.matdes.2020.108505

    Article  CAS  Google Scholar 

  6. A.C. Martin, J.P. Oliveira, C. Fink, Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy. Metall. Mater. Trans. A 51, 778–787 (2020). https://doi.org/10.1007/s11661-019-05564-8

    Article  CAS  Google Scholar 

  7. J.P. Oliveira, J.J. Shen, Z. Zeng, J.M. Park, Y.T. Choi, N. Schell, E. Maawad, N. Zhou, H.S. Kim, Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scripta Mater. 206, 114219 (2022). https://doi.org/10.1016/j.scriptamat.2021.114219

  8. P. Han, W. Wang, Z.H. Liu, T. Zhang, Q. Liu, X.H. Guan, K. Qiao, D.M. Ye, J. Cai, Y.C. Xie, K.S. Wang, Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing. J. Alloy. Compd. 907, 164426 (2022). https://doi.org/10.1016/j.jallcom.2022.164426

  9. G.M. Karthik, S. Panikar, G.D. Janaki Ram, R.S. Kottada, Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles. Mater. Sci. Eng. A 679, 193–203 (2017). https://doi.org/10.1016/j.msea.2016.10.038

  10. Y.Z. Liu, J. Chen, Z. Li, X.H. Wang, X.H. Fan, J.G. Liu, Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites. J. Alloy. Compd. 780, 558–564 (2019). https://doi.org/10.1016/j.jallcom.2018.11.364

  11. E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis, Microstructure and corrosion performance of aluminium matrix composites reinforced with refractory high-entropy alloy particulates. Appl. Sci. 11, 1300–1312 (2021). https://doi.org/10.3390/app11031300

    Article  CAS  Google Scholar 

  12. Q.L. Liu, X.P. Bao, S. Zhao, Y.Q. Zhu, Y.F. Lan, The influence of AlFeNiCrCoTi high-entropy alloy on microstructure, mechanical properties and tribological behaviors of aluminum matrix composite. Int. J. Metalcast. 15, 281–291 (2021). https://doi.org/10.1007/s40962-020-00462-x

    Article  CAS  Google Scholar 

  13. W. Wang, P. Han, Y.H. Wang, T. Zhang, P. Peng, K. Qiao, Z. Wang, Z.H. Liu, K.S. Wang, High-performance bulk pure Al prepared through cold spray-friction stir processing composite additive manufacturing. J. Mater. Res. Technol. 9, 9073–9079 (2020). https://doi.org/10.1016/j.jmrt.2020.06.034

    Article  CAS  Google Scholar 

  14. X.L. Xie, B. Hosni, C.Y. Chen, H.J. Wu, Y.L. Li, Z. Chen, C. Verdy, O.E.I. Kedim, Q.D. Zhong, A. Addad, C. Coddet, G. Ji, H.L. Liao, Corrosion behavior of cold sprayed 7075Al composite coating reinforced with TiB2 nanoparticles. Surf. Coat. Technol. 404, 126460 (2020). https://doi.org/10.1016/j.surfcoat.2020.126460

    Article  CAS  Google Scholar 

  15. D.L. Cong, Z.S. Li, Q.B. He, H.B. Chen, Z.P. Zhao, L.P. Zhang, H.L. Wu, Wear behavior of corroded Al-Al2O3 composite coatings prepared by cold spray. Surf. Coat. Technol. 326, 247–254 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.063

    Article  CAS  Google Scholar 

  16. G.S. Huang, W. Fu, L. Ma, X.B. Li, H.R. Wang, Cold spraying B4C particles reinforced aluminium coatings. Surf. Eng. 35, 772–783 (2019). https://doi.org/10.1080/02670844.2018.1553135

    Article  CAS  Google Scholar 

  17. J.M. Shockley, S. Descartes, P. Vo, E. Irissou, R.R. Chromik, The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al-Al2O3 composites. Surf. Coat. Technol. 270, 324–333 (2015). https://doi.org/10.1016/j.surfcoat.2015.01.057

    Article  CAS  Google Scholar 

  18. W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, K. Qiao, K.S. Wang, Friction stir processing of magnesium alloys: A review. Acta Metall. Sin-Engl. 33, 43–57 (2020). https://doi.org/10.1007/s40195-019-00971-7

    Article  CAS  Google Scholar 

  19. X.L. Xie, C.Y. Chen, Z. Chen, W. Wang, S. Yin, G. Ji, H.L. Liao, Achieving simultaneously improved tensile strength and ductility of a nano-TiB2/AlSi10Mg composite produced by cold spray additive manufacturing. Compos. Part B-Eng. 202, 108404 (2020). https://doi.org/10.1016/j.compositesb.2020.108404

    Article  CAS  Google Scholar 

  20. K. Yang, W.Y. Li, P.L. Niu, X.W. Yang, Y.X. Xu, Cold sprayed AA2024/Al2O3 metal matrix composites improved by friction stir processing: microstructure characterization, mechanical performance and strengthening mechanisms. J. Alloy. Compd. 736, 115–123 (2018). https://doi.org/10.1016/j.jallcom.2017.11.132

  21. K. Yang, W.Y. Li, Y.X. Xu, X.W. Yang, Using friction stir processing to augment corrosion resistance of cold sprayed AA2024/Al2O3 composite coatings. J. Alloy. Compd. 774, 1223–1232 (2019). https://doi.org/10.1016/j.jallcom.2018.09.386

  22. C.J. Huang, W.Y. Li, Z.H. Zhang, M. Fu, M.P. Planche, H.L. Liao, G. Montavon, Modification of a cold sprayed SiCp/Al5056 composite coating by friction stir processing. Surf. Coat. Technol. 296, 69–75 (2016). https://doi.org/10.1016/j.surfcoat.2016.04.016

    Article  CAS  Google Scholar 

  23. B. Zahmatkesh, M.H. Enayati, A novel approach for development of surface nanocomposite by friction stir processing. Mater. Sci. Eng. A 527, 6734–6740 (2010). https://doi.org/10.1016/j.msea.2010.07.024

    Article  CAS  Google Scholar 

  24. M.V.N.V. Satyanarayana, K. Adepu, K. Chauhan, Effect of overlapping friction stir processing on microstructure, mechanical properties and corrosion behavior of AA6061 alloy. Met. Mater. Int. 27, 3563–3573 (2021). https://doi.org/10.1007/s12540-020-00757-y

  25. C. Marion, P. Dirk, D. Eralp, R. Dierk, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010). https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  26. W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrix composites. Scripta Metall. Mater. 25, 33–38 (1991). https://doi.org/10.1016/0956-716X(91)90349-6

  27. G.J. Cui, Y. Qian, G.X. Bian, G.J. Gao, M. Hassani, Y.P. Liu, Z.M. Kou, CoCrNi matrix high-temperature wear resistant composites with micro- and nano-Al2O3 reinforcement. Compos. Commun. 22, 100461 (2020). https://doi.org/10.1016/j.coco.2020.100461

    Article  Google Scholar 

  28. Y.P. Zhang, Q. Wang, G. Chen, C.S. Ramachandran, Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf. Coat. Technol. 403, 126380 (2020). https://doi.org/10.1016/j.surfcoat.2020.126380

    Article  CAS  Google Scholar 

  29. H. Fujii, Y.F. Sun, H. Kato, K. Nakata, Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints. Mater. Sci. Eng. A 527, 3386–3391 (2010). https://doi.org/10.1016/j.msea.2010.02.023

    Article  CAS  Google Scholar 

  30. A.E. Lekatou, A. Karantzalis, Evangelou, Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behavior. Mater. Des. 65, 1121–1135 (2015). https://doi.org/10.1016/j.matdes.2014.08.040

    Article  CAS  Google Scholar 

  31. A.K. Lekatou, A.E. Sfikas, D. Karantzalis, Sioulas, Microstructure and corrosion performance of Al-32%Co alloys. Corros. Sci. 63, 193–209 (2012). https://doi.org/10.1016/j.corsci.2012.06.002

    Article  CAS  Google Scholar 

  32. A.G. Lekatou, A. Poulia, H. Mavros, A.E. Karantzalis, Thermal treatment, sliding wear and saline corrosion of Al in situ reinforced with Mg2Si and ex situ reinforced with TiC particles. J. Mater. Eng. Perform. 27, 5030–5039 (2018). https://doi.org/10.1007/s11665-018-3213-1

    Article  CAS  Google Scholar 

  33. R. Udhayan, D.P. Bhatt, On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. J. Power Sources 63, 103–107 (1996). https://doi.org/10.1016/S0378-7753(96)02456-1

    Article  CAS  Google Scholar 

  34. M. Mahdavian, M.M. Attar, Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies. Corros. Sci. 48, 4152–4157 (2008). https://doi.org/10.1016/j.corsci.2006.03.012

    Article  CAS  Google Scholar 

  35. B. Seo, K.H. Song, K. Park, Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel. Met. Mater. Int. 24, 1232–1240 (2018). https://doi.org/10.1007/s12540-018-0135-2

  36. Y.K. Wei, X.T. Luo, Y. Ge, X. Chu, G.S. Huang, C.J. Li, Deposition of fully dense Al-based coatings via in-situ micro-forging assisted cold spray for excellent corrosion protection of AZ31B magnesium alloy. J. Alloy. Compd. 806, 1116–1126 (2019). https://doi.org/10.1016/j.jallcom.2019.07.279

  37. K.J. Hodder, H. Izadi, A.G. McDonald, A.P. Gerlich, Fabrication of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Mater. Sci. Eng. A 556, 114–121 (2012). https://doi.org/10.1016/j.msea.2012.06.066

    Article  CAS  Google Scholar 

  38. Y. Liu, B. Jin, D.J. Li, X.Q. Zeng, J. Lu, Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment. Surf. Coat. Technol. 261, 219–226 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.026

    Article  CAS  Google Scholar 

  39. S.C. Lim, M.F. Ashby, Overview no. 55 Wear-Mechanism maps. Acta Metall. 35, 1–24 (1987). https://doi.org/10.1016/0001-6160(87)90209-4

    Article  CAS  Google Scholar 

  40. S. Ngai, T. Ngai, F. Vogel, W. Story, G.B. Thompson, L.N. Brewer, Saltwater corrosion behavior of cold sprayed AA7075 aluminum alloy coatings. Corros. Sci. 130, 231–240 (2018). https://doi.org/10.1016/j.corsci.2017.10.033

    Article  CAS  Google Scholar 

  41. F.S. Da Silva, J. Bedoya, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, A.V. Benedetti, Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel. Corros. Sci. 114, 57–71 (2017). https://doi.org/10.1016/j.corsci.2016.10.019

    Article  CAS  Google Scholar 

  42. O. Meydanoglu, B. Jodoin, E. Sabri Kayali, Microstructure, mechanical properties and corrosion performance of 7075 Al matrix ceramic particle reinforced composite coatings produced by the cold gas dynamic spraying process. Surf. Coat. Technol. 235, 108–116 (2013). https://doi.org/10.1016/j.surfcoat.2013.07.020

    Article  CAS  Google Scholar 

  43. X.W. Yang, W.Y. Li, S.Q. Yu, Y.X. Xu, K.W. Hu, Y.B. Zhao, Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings. J. Mater. Sci. Technol. 59, 117–128 (2020). https://doi.org/10.1016/j.jmst.2020.04.041

    Article  CAS  Google Scholar 

  44. S. Kumar, A.A. Rao, Influence of coating defects on the corrosion behavior of cold sprayed refractory metals. Appl. Surf. Sci. 396, 760–773 (2017). https://doi.org/10.1016/j.apsusc.2016.11.022

    Article  CAS  Google Scholar 

  45. S.O.R. Sheykholeslami, R.T. Mousavian, D. Brabazon, Corrosion behaviour of rolled A356 matrix composite reinforced with ceramic particles. Int. J. Mater. Res. 107, 1100–1111 (2016). https://doi.org/10.3139/146.111443

    Article  CAS  Google Scholar 

  46. N.R. Wang, B. Wu, W.L. Wu, J. Li, C.H. Ge, Y.F. Dong, L.X. Zhang, Y. Wang, Microstructure and properties of aluminium-high entropy alloy composites fabricated by mechanical alloying and spark plasma sintering. Mater. Today Commun. 25, 101366 (2020). https://doi.org/10.1016/j.mtcomm.2020.101366

    Article  CAS  Google Scholar 

  47. H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing. Wear 303, 65–77 (2013). https://doi.org/10.1016/j.wear.2013.02.023

    Article  CAS  Google Scholar 

  48. V.N.V. Munagala, S. Bessette, R. Gauvin, R.R. Chromik, Sliding wear of cold sprayed Ti6Al4V coatings: Effect of porosity and normal load. Wear 450–451, 203268 (2020). https://doi.org/10.1016/j.wear.2020.203268

    Article  CAS  Google Scholar 

  49. S.A. Alidokht, R.R. Chromik, Sliding wear behavior of cold-sprayed Ni-WC composite coatings: Influence OF WC content. Wear 477, 203792 (2021). https://doi.org/10.1016/j.wear.2021.203792

    Article  CAS  Google Scholar 

  50. Z. Tan, L. Wang, Y.F. Xue, P. Zhang, T.Q. Cao, X.W. Cheng, High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater. Des. 909, 219–226 (2016). https://doi.org/10.1016/j.matdes.2016.07.086

    Article  CAS  Google Scholar 

  51. X. Yang, Z.F. Yan, P. Dong, B.Y. Cheng, J. Zhang, T.T. Zhang, H.X. Zhang, W.X. Wang, Surface modification of aluminum alloy by incorporation of AlCoCrFeNi high entropy alloy particles via underwater friction stir processing. Surf. Coat. Technol. 385, 125438 (2020). https://doi.org/10.1016/j.surfcoat.2020.125438

    Article  CAS  Google Scholar 

  52. H.H. Stott, High-temperature sliding wear of metals. Tribol. Int. 35, 489–495 (2002). https://doi.org/10.1016/S0301-679X(02)00041-5

    Article  CAS  Google Scholar 

  53. N. Nemati, M. Emamy, O.V. Penkov, J. Kim, D.E. Kim, Mechanical and high temperature wear properties of extruded Al composite reinforced with Al13Fe4 CMA nanoparticles. Mater. Des. 90, 532–544 (2016). https://doi.org/10.1016/j.matdes.2015.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China [Nos. 51974220, 52001078, 52104383, 52034005], the National Key Research and Development Program of China[2021YFB3700902], and the Guangdong Basic and Applied Basic Research Foundation [2019B1515120016].

Author information

Authors and Affiliations

Authors

Contributions

Peng Han performed the major experiment and wrote the main manuscript. Jia Lin performed the experiment and explained the phenomena of the experiment. Zhihao Liu, Yating Xiang and Ting Zhang analyzed the data. Qiang Liu, Ke Qiao and Xiaohu Guan gave the technical support and revised the manuscript. Wen Wang, Yingchun Xie and Kuaishe Wang provided the financial support and gave a lot of advises for the experiment and paper, in addition, they also revised the manuscript.

Corresponding authors

Correspondence to Wen Wang or Yingchun Xie.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Lin, J., Wang, W. et al. Friction Stir Processing of Cold-Sprayed High-Entropy Alloy Particles Reinforced Aluminum Matrix Composites: Corrosion and Wear Properties. Met. Mater. Int. 29, 845–860 (2023). https://doi.org/10.1007/s12540-022-01248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01248-y

Keywords

Navigation