Skip to main content
Log in

Room temperature deposition of TiO2 using nano particle deposition system (NPDS): Application to dye-sensitized solar cell (DSSC)

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

To apply for the working electrode of dye-sensitized solar cell (DSSC), semiconducting TiO2 powder is deposited on indium tin oxide (ITO)-coated glass. In conventional DSSC fabrication, the high-temperature sintering process should be contained to make the necking of powders, and to assemble powders and substrate. In this research, dry TiO2 powder is deposited using a nano particle deposition system (NPDS) to make photoelectrode layer through spraying at room temperature conditions. The powder is sprayed through a slit-type nozzle having a 0.4×10mm2 rectangular outlet under atmospheric chamber pressure. Through XRD analysis and FE-SEM observation, the deposition of the semiconductor oxide powder is confirmed and the thickness (7.6μm) is measured. The fabricated DSSC has a short circuit current density JSC = 3.077mA/cm2, open circuit voltage VOC = 0.709V, and energy efficiency η = 1.24%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B. and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, Vol. 353, No. 6346, pp. 737–740, 1991.

    Article  Google Scholar 

  2. Grätzel, M., “Photoelectrochemical cells,” Nature, Vol. 414, No. 6861, pp. 338–344, 2001.

    Article  Google Scholar 

  3. De Paoli, M.-A., Nogueira, A. F., Machado, D. A. and Longo, C., “All-polymeric electrochromic and photoelectrochemical devices: new advances,” Electrochim. Acta, Vol. 46, No. 26–27, pp. 4243–4249, 2001.

    Article  Google Scholar 

  4. Longo, C., Freitas, J. N. and De Paoli, M.-A., “Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte,” J. Photochem. Photobiol. A: Chem., Vol. 159, No. 1, pp. 33–39, 2003.

    Article  Google Scholar 

  5. Pichot, F., Pitts, J. R. and Gregg, B. A., “Low-Temperature Sintering of TiO2 Colloids: Application to Flexible Dye-Sensitized Solar Cells,” Langmuir, Vol. 16, No. 13, pp. 5626–5630, 2000.

    Article  Google Scholar 

  6. Lindström, H., Holmberg, A., Magnusson, E., Lindquist, S.-E., Malmqvist, L. and Hagfeldt, A., “A new method for manufacturing nanostructured electrodes on plastic substrates,” Nano Lett., Vol. 1, No. 2, pp. 97–100, 2001.

    Article  Google Scholar 

  7. Lindström, H., Holmberg, A., Magnusson, E., Malmqvist, L. and Hagfeldt, A., “A new method to make dye-sensitized nanocrystalline solar cells at room temperature,” J. Photochem. Photobiol. A: Chem., Vol. 145, No. 1–2, pp. 107–112, 2001.

    Article  Google Scholar 

  8. Gutiérrez-Tauste, D., Zumeta, I., Vigil, E., Hernández-Fenollosa, M. A., Domenech, X. and Ayllón, J. A., “New low-temperature preparation method of the TiO2 porous photoelectrode for dyesensitized solar cells using UV irradiation,” J. Photochem. Photobiol. A: Chem., Vol. 175, No. 2–3, pp. 165–171, 2005.

    Article  Google Scholar 

  9. Lewis, L. N., Spivack, J. L., Gasaway, S., Williams, E. D., Gui, J. Y., Manivannan, V. and Siclovan, O. P., “A novel UVmediated low-temperature sintering of TiO2 for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 90, No. 7–8, pp. 1041–1051, 2006.

    Article  Google Scholar 

  10. Kim, Y., Yoo, B. J., Vittal, R., Lee, Y., Park, N.-G. and Kim, K.-J., “Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells,” J. Power Sources, Vol. 175, No. 2, pp. 914–919, 2008.

    Article  Google Scholar 

  11. Lee, K. M., Hu, C. W., Chen, H. W. and Ho, K. C., “Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 92, No. 12, pp. 1628–1633, 2008.

    Article  Google Scholar 

  12. Xiao, Y., Wu, J., Yue, G., Xie, G., Lin, J. and Huang, M., “The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells,” Electrochim. Acta, Vol. 55, No. 15, pp. 4573–4578, 2010.

    Article  Google Scholar 

  13. Kim, K., Lee, G.-W., Yoo, K., Kim, D. Y., Kim, J.-K. and Park, N.-G., “Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell,” J. Photochem. Photobiol. A: Chem., Vol. 204, No. 2–3, pp. 144–147, 2009.

    Article  Google Scholar 

  14. Weerasinghe, H. C., Sirimanne, P. M., Franks, G. V., Simon, G. P. and Cheng, Y. B., “Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells,” J. Photochem. Photobiol. A: Chem., Vol. 213, No. 1, pp. 30–36, 2010.

    Article  Google Scholar 

  15. Chun, D. M., Kim, M. H., Lee, J. C. and Ahn, S. H., “A Nanoparticle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions,” Int. J. Precis. Eng. Manuf., Vol. 9, No. 1, pp. 51–53, 2008.

    Google Scholar 

  16. Chun, D. M., Kim, M. H., Lee, J. C. and Ahn, S. H., “TiO2 Coating on Metal and Polymer Substrates by Nano Particle Deposition System (NPDS),” CIRP Ann - Manuf. Technol., Vol. 57, No. 1, pp. 551–554, 2008.

    Article  Google Scholar 

  17. Chun, D. M. and Ahn, S. H., “Deposition mechanism of dry sprayed ceramic particles at room temperature using a nanoparticle deposition system,” Acta Materialia, Vol. 59, No. 7, pp. 2698–2703, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MS., Chun, DM., Choi, JO. et al. Room temperature deposition of TiO2 using nano particle deposition system (NPDS): Application to dye-sensitized solar cell (DSSC). Int. J. Precis. Eng. Manuf. 12, 749–752 (2011). https://doi.org/10.1007/s12541-011-0099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-011-0099-3

Keywords

Navigation