Skip to main content
Log in

Design and Analysis of a Flexure-Based Parallel XY Stage Driven by Differential Piezo Forces

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The non-bipolar operation of a stack-type piezo actuator causes non-bidirectional motion of the piezo-driven stage. This paper proposes a piezo-driven XY stage with a monolithic compliant parallel mechanism for fully bidirectional operation. Four prismatic-prismatic flexure-based joint chains are arranged antagonistically at the four sides of a target platform of the XY stage. The motion of each axis is conducted by differential force between piezo actuators in two actuating mechanisms arranged at both sides of a target platform along the same axis. Due to this antagonistic arrangement, the home position of the target platform is at the center position of the full operating range, and the target platform is movable along the positive and negative directions from the home position. Mathematical modeling of the proposed compliant mechanism is performed using a matrix-based equation of motion. The compliant mechanism is designed to satisfy design constraints using the mathematical model, and the designed mechanism is then analyzed using the Finite Element Method (FEM). The proposed bidirectional operation of the piezo-driven XY stage is demonstrated and the performance of the stage is subsequently described in terms of the response time, bandwidth and resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chen, L.-S., Yen, J.-Y., Chen, J. J. H., Kuo, F.-C., Chen, M.-S., Chen, Y.-Y., et al. (2013). Precision tracking of a piezo-driven stage by charge feedback control. Precision Engineering,37(4), 793–804.

    Article  Google Scholar 

  2. Choi, K.-B., Lee, J. J., & Hata, S. (2010). A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel. Sensors and Actuators A: Physical,161(1–2), 173–181.

    Article  Google Scholar 

  3. Physik Instrumente. (2010). Micropositioning, nanopositioning, nanoautomation: Solutions for cutting-edge technologies. Karlsruhe/Palmbach, Germany: Physik Instrumente Catalogue.

  4. Piezomechanik. (2010). First steps towards piezoaction. Munich, Germany: Piezo-mechanik GmbH Catalogue.

  5. Piezomechanik. (2011). Low voltage co-fired multilayer stacks, rings and chips for actuation. Munich, Germany: Piezomechanik GmbH Catalogue.

  6. Smith, S. T. (2000). Flexures: Elements of elastic mechanisms. Amsterdam, Netherlands: Gordon and Breach Science Publishers.

  7. Lobontiu, N. (2003). Compliant mechanisms: Design of flexure hinges. Cambridge: CRC Press LLC.

    Google Scholar 

  8. Paros, J. M., & Weisbord, L. (1965). How to design flexure hinges. Machine Design,37(5), 151–156.

    Google Scholar 

  9. Choi, K.-B., & Lee, J. J. (2005). Passive compliant wafer stage for single-step nano-imprint lithography. Review of Scientific Instruments,76, 075106.

    Article  Google Scholar 

  10. Lobontiu, N., & Paine, J. S. N. (2002). Design of circular cross-section corner-filleted flexure hinges for three-dimensional complaint mechanisms. Journal of Mechanical Design,124(3), 479–484.

    Article  Google Scholar 

  11. Lu, S.-S., & Yan, P. (2017). A stiffness modeling approach for multi-leaf spring mechanism supporting coupling error analysis of nano-stages. International Journal of Precision Engineering and Manufacturing,18(6), 863–870.

    Article  Google Scholar 

  12. Choi, K.-B., & Kim, D.-H. (2006). Monolithic parallel linear compliant mechanism for two axes ultraprecision linear motion. Review of Scientific Instruments,77, 065106.

    Article  Google Scholar 

  13. Yong, Y. K., Moheimani, W. O. R., Kenton, B. J., & Leang, K. K. (2012). High-speed flexure-guided nanopositioning: Mechanical design and control issues. Review of Scientific Instruments,83(12), 121101.

    Article  Google Scholar 

  14. Choi, K.-B., Lee, J. J., Kim, G. H., & Lim, H. J. (2012). XY parallel compliant stage with compact configuration. Journal of Nanoscience and Nanotechnology,12(7), 5245–5251.

    Article  Google Scholar 

  15. Choi, K.-B., Lee, J. J., Kim, G. H., & Lim, H. J. (2012). A compliant parallel mechanism with flexure-based joint chains for two translations. International Journal of Precision Engineering and Manufacturing,13(9), 1625–1632.

    Article  Google Scholar 

  16. Kang, B. H., Wen, J. T. Y., Dagalakis, N. G., & Gorman, J. J. (2005). Analysis and design of parallel mechanisms with flexure joints. IEEE Transactions on Robotics,21(6), 1179–1185.

    Article  Google Scholar 

  17. Li, Y., & Xu, Q. (2009). Modeling and performance evaluation of a flexure-based XY parallel micromanipulator. Mechanism and Machine Theory,44(12), 2127–2152.

    Article  MATH  Google Scholar 

  18. Elmustafa, A. A., & Lagally, M. G. (2001). Flexural-hinge guided motion nanopositioner stage for precision machining: Finite element simulations. Precision Engineering,25(1), 77–81.

    Article  Google Scholar 

  19. Huang, S.-C., & Dao, T.-P. (2016). Design and computational optimization of a flexure-based XY positioning platform using FEA-based response surface methodology. International Journal of Precision Engineering and Manufacturing,17(8), 1035–1048.

    Article  Google Scholar 

  20. Dao, T.-P., & Huang, S.-C. (2017). Optimization of a two degree of freedom compliant mechanism using Taguchi method-based grey relational analysis. Microsystem Technologies,23(10), 4815–4830.

    Article  Google Scholar 

  21. Juuti, J., Kordas, K., Lonnakko, R., Moilanen, V.-P., & Leppavuori, S. (2005). Mechanically amplified large displacement piezoelectric actuators. Sensors and Actuators A: Physical,120(1), 225–231.

    Article  Google Scholar 

  22. Xu, W., & King, T. (1996). Flexure hinges for piezo actuator displacement amplifiers: Flexibility accuracy and stress considerations. Precision Engineering,19(1), 4–10.

    Article  Google Scholar 

  23. Choi, S. B., Han, S. S., & Lee, Y. S. (2005). Fine motion control of a moving stage using a piezoactuator associated with a displacement amplifier. Smart Materials Structures,14(1), 222–230.

    Article  Google Scholar 

  24. Pinskier, J., Shirinzadeh, B., Clark, L., Qin, Y., & Fatikow, S. (2016). Design, development and analysis of a haptic-enabled modular flexure-based manipulator. Mechatronics,40, 156–166.

    Article  Google Scholar 

  25. Zubir, M. N. M., & Shirinzadeh, B. (2009). Development of a high precision flexure-based microgripper. Precision Engineering,33(4), 362–370.

    Article  Google Scholar 

  26. Tian, Y., Shirinzadeh, B., Zhang, D., & Alici, G. (2009). Development and dynamic modelling of a flexure-based Scott-Russell mechanism for nano-manipulation. Mechanical Systems and Signal Processing,23(3), 957–978.

    Article  Google Scholar 

  27. Niezrecki, C., Brei, D., Balakrishnan, S., & Moskalik, A. (2001). Piezoelectric actuation: state of the art. Shock and Vibration Digest,33(4), 269–280.

    Article  Google Scholar 

  28. Ma, H.-W., Yao, S.-M., Wang, L.-Q., & Zhong, Z. (2006). Analysis of the displacement amplification ratio of bridge-type flexure hinge. Sensors and Actuators A: Physical,132(2), 730–736.

    Article  Google Scholar 

  29. Kim, J. H., Kim, S. H., & Kwak, Y. K. (2003). Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism. Review of Scientific Instruments,74(5), 2918–2924.

    Article  Google Scholar 

  30. Xu, Q., & Li, Y. (2011). Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mechanism and Machine Theory,46(2), 183–200.

    Article  MATH  Google Scholar 

  31. Choi, K.-B., Lee, J. J., Kim, G. H., Lim, H. J., & Kwon, S. G. (2018). Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model. Mechanism and Machine Theory,121, 355–372.

    Article  Google Scholar 

  32. Liu, P.-B., Yan, P., Zhang, Z., & Leng, T.-T. (2015). Flexure-hinges guided nano-stage for precision manipulations: Design, modeling and control. International Journal of Precision Engineering and Manufacturing,16(11), 2245–2254.

    Article  Google Scholar 

  33. Choi, K.-B., Lim, H. J., Kim, G. H., & Lee, J. J. (2014). A flexure-based scanner for a fully bidirectional operation driven by a differential piezo force. Journal of Mechanical Engineering Science,228(27), 3186–3199.

    Article  Google Scholar 

  34. Choi, K.-B. (2005). Dynamics of a compliant mechanism based on flexure hinges. J. Mechanical Engineering Science,219, 225–235.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Basic Science Institute (Grant No. D010400), and BioNano Health-Guard Research Center funded by the Ministry of Science and ICT(MSIT) of Korea as Global Frontier Project (Grant No. H-GUARD_ 2013M3A6B2078943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Bong Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, KB., Lee, J., Kim, G. et al. Design and Analysis of a Flexure-Based Parallel XY Stage Driven by Differential Piezo Forces. Int. J. Precis. Eng. Manuf. 21, 1547–1561 (2020). https://doi.org/10.1007/s12541-020-00358-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00358-0

Keywords

Navigation