Skip to main content
Log in

Artery Wall Viscoelasticity: Measurement, Assessment, and Clinical Implications

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Arteries, which carry blood from the heart to the peripheral tissues, are continuously stressed by pressure pulsation. Pathological changes in arterial walls could cause high-risk cardiovascular diseases, such as heart attack and stroke. Once established, vascular diseases progress by the continual remodeling of the arterial wall, which includes changes in the composition and function of the wall tissues. An arterial wall has both elastic and viscous characteristics, and pathological and degenerative changes in the wall tissue affect the viscoelastic behavior of the artery wall. The arterial viscoelasticity may provide useful information regarding the development and progression of arterial diseases. However, only the wall stiffness has been considered as a clinical diagnostic index for atherosclerosis. Only a few studies have assessed the viscoelasticity of an intact artery, and further studies are necessary to employ the wall viscoelasticity as a physical marker for diagnosing vascular diseases. Accordingly, this study focuses on arterial wall viscosity assessment and its possible clinical applications. In vitro and in vivo tissue viscoelasticity measurement techniques are reviewed, and constitutive models used to assess viscoelastic artery wall behaviors are summarized. Because wall viscoelasticity depends on the tissue composition and function, pathological changes in the arterial wall during atherosclerosis and the contribution of vascular cells to viscoelasticity are discussed. Finally, the recent progress in clinical tools for measuring arterial viscoelasticity is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., & Lewis, E. F. (2019). Atherosclerosis (Primer). Nature Reviews: Disease Primers, 5(1), 56

    Google Scholar 

  2. Naghavi, M., Libby, P., Falk, E., Casscells, S. W., Litovsky, S., Rumberger, J., & Willerson, J. T. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108(14), 1664–1672

    Article  Google Scholar 

  3. Spagnoli, L. G., Mauriello, A., Sangiorgi, G., Fratoni, S., Bonanno, E., Schwartz, R. S., & Holmes, D. R. (2004). Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. JAMA, 292(15), 1845–1852

    Article  Google Scholar 

  4. Akyildiz, A. C., Speelman, L., & Gijsen, F. J. (2014). Mechanical properties of human atherosclerotic intima tissue. Journal of Biomechanics, 47(4), 773–783

    Article  Google Scholar 

  5. Chai, C. K., Speelman, L., Oomens, C. W., & Baaijens, F. P. (2014). Compressive mechanical- properties of atherosclerotic plaques–indentation test to characterise the local anisotropic behaviour. Journal of Biomechanics, 47(4), 784–792

    Article  Google Scholar 

  6. Lee, R. T., Grodzinsky, A. J., Frank, E. H., Kamm, R. D., & Schoen, F. J. (1991). Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation, 83(5), 1764–1770

    Article  Google Scholar 

  7. Lee, R. T., Richardson, S. G., Loree, H. M., Grodzinsky, A. J., Gharib, S. A., Schoen, F. J., & Pandian, N. (1992). Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging an in vitro study. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 12(1), 1–5

    Article  Google Scholar 

  8. Walraevens, J., Willaert, B., De Win, G., Ranftl, A., De Schutter, J., & Vander Sloten, J. (2008). Correlation between compression, tensile and tearing tests on healthy and calcified aortic tissues. Medical Engineering & Physics, 30(9), 1098–1104

    Article  Google Scholar 

  9. Maher, E., Creane, A., Sultan, S., Hynes, N., Lally, C., & Kelly, D. J. (2009). Tensile and compressive properties of fresh human carotid atherosclerotic plaques. Journal of Biomechanics, 42(16), 2760–2767

    Article  Google Scholar 

  10. Maher, E., Creane, A., Sultan, S., Hynes, N., Lally, C., & Kelly, D. J. (2011). Inelasticity of human carotid atherosclerotic plaque. Annals of Biomedical Engineering, 39(9), 2445–2455

    Article  Google Scholar 

  11. Barrett, S. R. H., Sutcliffe, M. P. F., Howarth, S., Li, Z. Y., & Gillard, J. H. (2009). Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. Journal of Biomechanics, 42(11), 1650–1655

    Article  Google Scholar 

  12. Chai, C. K., Akyildiz, A. C., Speelman, L., Gijsen, F. J., Oomens, C. W., van Sambeek, M. R., & Baaijens, F. P. (2013). Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. Journal of Biomechanics, 46(10), 1759–1766

    Article  Google Scholar 

  13. Topoleski, L. D. T., Salunke, N. V., Humphrey, J. D., & Mergner, W. J. (1997). Composition-and history-dependent radial compressive behavior of human atherosclerotic plaque. Journal of Biomedical Materials Research, 35(1), 117–127

    Article  Google Scholar 

  14. Salunke, N. V., Topoleski, L. D. T., Humphrey, J. D., & Mergner, W. J. (2001). Compressive stress-relaxation of human atherosclerotic plaque. Journal of Biomedical Materials Research, 55(2), 236–241

    Article  Google Scholar 

  15. Cox, M. A., Driessen, N. J., Boerboom, R. A., Bouten, C. V., & Baaijens, F. P. (2008). Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility. Journal of Biomechanics, 41(2), 422–429

    Article  Google Scholar 

  16. Gasser, T. C., & Forsell, C. (2011). The numerical implementation of invariant-based viscoelastic formulations at finite strains. An Anisotropic Model for the Passive Myocardium, Computer Methods in Applied Mechanics and Engineering, 200(49–52), 3637–3645

    MATH  Google Scholar 

  17. Heiland, V. M., Forsell, C., Roy, J., Hedin, U., & Gasser, T. C. (2013). Identification of carotid plaque tissue properties using an experimental-numerical approach. Journal of the Mechanical Behavior of Biomedical Materials, 27, 226–238

    Article  Google Scholar 

  18. Yao, W., Yoshida, K., Fernandez, M., Vink, J., Wapner, R. J., Ananth, C. V., et al. (2014). Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. Journal of the Mechanical Behavior of Biomedical Materials., 34, 18–26

    Article  Google Scholar 

  19. Chhai, P., & Rhee, K. (2020). Computational study on phase lag of arterial-wall motion for assessment of plaque vulnerability. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 234(5), 517–526

    Article  Google Scholar 

  20. Bergel, D. H. (1961). The dynamic elastic properties of the arterial wall. The Journal of Physiology, 153(3), 458–469

    Article  Google Scholar 

  21. Bia, D., Armentano, R. L., Zócalo, Y., Barmak, W., Migliaro, E., & Cabrera Fischer, E. I. (2005). In vitro model to study arterial wall dynamics through pressure-diameter relationship analysis. Latin American Applied Research, 35(3), 217–224

    Google Scholar 

  22. Balocco, S., Basset, O., Courbebaisse, G., Boni, E., Frangi, A. F., Tortoli, P., et al. (2010). Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler ultrasound. Physics in Medicien & Biology, 55(12), 3557–3575

    Article  Google Scholar 

  23. Peterson, L. H., Jensen, R. E., & Parnell, J. (1960). Mechanical properties of arteries in vivo. Circulation Research, 8(3), 622–639

    Article  Google Scholar 

  24. Armentano, R. L., Barra, J. G., Levenson, J., Simon, A., & Pichel, R. H. (1995). Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circulation Research, 76(3), 468–478

    Article  Google Scholar 

  25. Ghigo, A. R., Wang, X. F., Armentano, R., Fullana, J. M., & Lagrée, P. Y. (2017). Linear and nonlinear viscoelastic arterial wall models: Application on animals. Journal of Biomechanical Engineering, 139(1), 011003

    Article  Google Scholar 

  26. Shau, Y.-W., Wang, C.-L., Shieh, J.-Y., & Hsu, T.-C. (1999). Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound in Medicine & Biology, 25(9), 1377–1388

    Article  Google Scholar 

  27. Lénárd, Z., Fülöp, D., Visontai, Z., Jokkel, G., Reneman, R., & Kollai, M. (2000). Static versus dynamic distensibility of the carotid artery in humans. Journal of Vascular Research, 37(2), 103–111

    Article  Google Scholar 

  28. Hasegawa, H., & Kanai, H. (2004). Measurement of elastic moduli of the arterial wall at multiple frequencies by remote actuation for assessment of viscoelasticity. Japanese Journal of Applied Physics, 43(5), 3197–3203

    Article  Google Scholar 

  29. Sakai, Y., Taki, H., & Kanai, H. (2016). Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement. Japanese Journal of Applied Physics, 55(7S1), 07KF11

    Article  Google Scholar 

  30. Saito, T., Mori, S., Arakawa, M., Ohba, S., Kobayashi, K., & Kanai, H. (2020). Estimation of viscoelasticity of radial artery via simultaneous measurement of changes in pressure and diameter using a single ultrasound probe. Japanese Journal of Applied Physics, 59, SSKE04

    Google Scholar 

  31. Learoyd, B. M., & Taylor, M. G. (1966). Alterations with age in the viscoelastic properties of human arterial walls. Circulation Research, 18(3), 278–292

    Article  Google Scholar 

  32. Tanaka, T. T., & Fung, Y.-C. (1974). Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. Journal of Biomechanics, 7(4), 357–370

    Article  Google Scholar 

  33. Xie, J., Zhou, J., & Fung, Y. C. (1995). Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitia layers. Journal of Biomechanical Engineering, 117(1), 136–145

    Article  Google Scholar 

  34. Dobrin, P. B. (1999). Distribution of lamellar deformations: Implications for properties of the arterial media. Hypertension, 33(3), 806–810

    Article  Google Scholar 

  35. Holzapfel, G. A., Gasser, T. C., & Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids, 21(3), 441–463

    Article  MATH  Google Scholar 

  36. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues. (2nd ed.). New York: Springer-Verlag.

    Book  Google Scholar 

  37. Holzapfel, G. A. (2000). Nonlinear solid mechanics.A continuum approach for engineering. Chichester: Wiley.

    MATH  Google Scholar 

  38. Forsell, C., & Gasser, T. C. (2011). Numerical simulation of the failure of ventricular tissue due to deep penetration: The impact of constitutive properties. Journal of Biomechanics, 44(1), 45–51

    Article  Google Scholar 

  39. Zareh, M., Fradet, G., Naser, G., & Mohammadi, H. (2015). Are two-dimensional images sufficient to assess the atherosclerotic plaque vulnerability: A viscoelastic and anisotropic finite element model. Cardiovascular System, 3(1), 3

    Article  Google Scholar 

  40. Yao, W., Yoshida, K., Fernandez, M., Vink, J., Wapner, R. J., Ananth, C. V., & Myers, K. M. (2014). Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. Journal of the Mechanical Behavior of Biomedical Materials, 34, 18–26

    Article  Google Scholar 

  41. Park, M. H., Chhai, P., & Rhee, K. (2019). Analysis of flow and wall deformation in a stenotic flexible channel containing a soft core, simulating atherosclerotic arteries. International Journal of Precision Engineering and Manufacturing, 20(6), 1047–1056

    Article  Google Scholar 

  42. Valdez-Jasso, D., Banks, H. T., Haider, M. A., Bia, D., Zocalo, Y., Armentano, R. L., et al. (2009). Viscoelastic models for passive arterial wall dynamics. Advances in Applied Mathematics and Mechanics, 1(2), 151–165

    MathSciNet  Google Scholar 

  43. Salunke, N. V., & Topoleski, L. D. (1997). Biomechanics of atherosclerotic plaque. Critical Reviews in Biomedical Engineering, 25(3), 43–285

    Google Scholar 

  44. Lillie, M. A., & Gosline, J. M. (2007). Mechanical properties of elastin along the thoracic aorta in the pig. Journal of Biomechanics, 40(10), 2214–2221

    Article  Google Scholar 

  45. Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6), 15–35

    Article  Google Scholar 

  46. Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J. J., Abboud, J. A., & Iozzo, R. V. (2003). Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Annals of Biomedical Engineering, 31(5), 599–605

    Article  Google Scholar 

  47. Li, L. P., Herzog, W., Korhonen, R. K., & Jurvelin, J. S. (2005). The role of viscoelasticity of collagen fibers in articular cartilage: Axial tension versus compression. Medical Engineering & Physics, 27(1), 51–57

    Article  Google Scholar 

  48. Lujan, T. J., Underwood, C. J., Jacobs, N. T., & Weiss, J. A. (2009). Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. Journal of Applied Physiology, 106(2), 423–431

    Article  Google Scholar 

  49. Wang, Z., Lakes, R. S., Golob, M., Eickhoff, J. C., & Chesler, N. C. (2013). Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS ONE, 8(11), e78569

    Article  Google Scholar 

  50. García, A., Martínez, M. A., & Peña, E. (2012). Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: Influence of proximal and distal positions. Biorheology, 49(4), 271–288

    Article  Google Scholar 

  51. Miyazaki, H., Hayashi, K., & Hasegawa, Y. (2003). Tensile properties of fibroblasts and vascular smooth muscle cells. Biorheology, 40(1–3), 207–212

    Google Scholar 

  52. Nagayama, K., Nagano, Y., Sato, M., & Matsumoto, T. (2006). Effectofactin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas. Journal of Biomechanics, 39(2), 293–301

    Article  Google Scholar 

  53. Bia, D., Zócalo, Y., Cabrera-Fischer, E. I., Wray, S., & Armentano, R. (2014). Quantitative analysis of the relationship between blood vessel wall constituents and viscoelastic properties: Dynamic biomechanical and structural in vitro studies in aorta and carotid arteries. Hindawi Physiology Journal, 2014, 9

    Google Scholar 

  54. Santana, D. B., Barra, J. G., Grignola, J. C., Ginés, F. F., & Armentano, R. L. (2005). Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension. Journal of Applied Physiology, 98(2), 605–613

    Article  Google Scholar 

  55. Armentano, R. L., Barra, J. G., Santana, D. B., Pessana, F. M., Graf, S., & Craiem, D. (2006). Smart damping modulation of carotid wall energetics in human hypertension: Effects of angiotensin converting enzyme inhibition. Hypertension, 47(3), 384–390

    Article  Google Scholar 

  56. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801

    Article  Google Scholar 

  57. Orr, A. W., Hastings, N. E., Blackman, B. R., & Wamhoff, B. R. (2010). Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. Journal of Vascular Research, 47(2), 168–180

    Article  Google Scholar 

  58. Kothapalli, D., Liu, S. L., Bae, Y. H., Monslow, J., Xu, T., Hawthorne, E. A., Byfield, F. J., et al. (2012). Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Reports, 2(5), 1259–1271

    Article  Google Scholar 

  59. Rodriguez, C., Martinez-Gonzalez, J., Raposo, B., Alcudia, J. F., Guadall, A., & Badimon, L. (2008). Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovascualr Research, 79(1), 7–13

    Article  Google Scholar 

  60. Bennett, M. R. (1999). Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovascular Research, 41(2), 361–368

    Article  Google Scholar 

  61. Wal, A. C., & Becker, A. E. (1999). Atherosclerotic plaque rupture – pathologic basis of plaque stability and instability. Cardiovascular Research, 41(2), 334–344

    Article  Google Scholar 

  62. Taniguchi, R., Hosaka, A., Miyahara, T., Hoshina, K., Okamoto, H., & Shigematsu, K. (2015). Viscoelastic deterioration of the carotid artery vascular wall is a possible predictor of coronary artery disease. Journal of Atherosclerosis and Thrombosis, 22(4), 415–423

    Article  Google Scholar 

  63. Yokobori, A. T., Watanabe, K., Saiki, Y., Nishikawa, Y., Kudo, K., Ohmi, T., et al. (2019). Frequency and chaotic analysis of pulsatile motion of blood vessel wall related to aneurysm. Bio-Medical Materials and Engineering, 30(2), 243–253

    Article  Google Scholar 

  64. Langewouters, G. J., Wesseling, K. H., & Goedhard, W. J. (1985). The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five components model. Journal of Biomechanics, 18(8), 613–620

    Article  Google Scholar 

  65. Callaghan, F. J., Geddes, L. A., Babbs, C. F., & Bourland, J. D. (1986). Relationship between pulse-wave velocity and arterial elasticity. Medical and Biological Engineering and Computing, 24(3), 248–254

    Article  Google Scholar 

  66. Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A., et al. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement: Validation and clinical application studies. Hypertension, 26(3), 485–490

    Article  Google Scholar 

  67. Safar, H., Mourad, J. J., Safar, M., & Blacher, J. (2002). Aortic pulse wave velocity, an independent marker of cardiovascular risk. Archives des Maladies du Coeur et des Vaisseaux, 95(12), 1215–1218

    Google Scholar 

  68. Safar, M. E., Henry, O., & Meaume, S. (2002). Aortic pulse wave velocity: an independent marker of cardiovascular risk. The American Journal of Geriatric Cardiology, 11(5), 295–298

    Article  Google Scholar 

  69. Eriksson, A., Greiff, E., Loupas, T., Persson, M., & Pesque, P. (2002). Arterial pulse wave velocity with tissue Doppler imaging. Ultrasound in Medicine and Biology, 28(5), 571–580

    Article  Google Scholar 

  70. Bolster, B. D., Jr., Atalar, E., Hardy, C. J., & McVeigh, E. R. (2005). Accuracy of arterial pulse-wave velocity measurement using MR. Journal of Magnetic Resonance Imaging, 8(4), 878–888

    Article  Google Scholar 

  71. Brands, P. J., Willigers, J. M., Ledoux, L. A., Reneman, R. S., & Hoeks, A. P. (1998). A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound. Ultrasound in Medicine & Biology, 24(9), 1325–1335

    Article  Google Scholar 

  72. Hoeks, A. P., Brands, P. J., Willigers, J. M., & Reneman, R. S. (1999). Non-invasive measurement of mechanical properties of arteries in health and disease. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 213(3), 195–202

    Article  Google Scholar 

  73. Brands, P. J., Hoeks, A. P., Willigers, J., Willekes, C., & Reneman, R. S. (1999). An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound. European Journal of Ultrasound, 9(3), 257–266

    Article  Google Scholar 

  74. Messas, E., Pernot, M., & Couade, M. (2013). Arterial wall elasticity: State of the art and future Prospects. Diagnostic and Interventional Imaging, 94(5), 561–569

    Article  Google Scholar 

  75. Schaar, J. A., de Korte, C. L., Mastik, F., Strijder, C., Pasterkamp, G., Boersma, E., et al. (2003). Characterizing vulnerable plaque features with intravascular elastography. Circulation, 108(21), 2636–2641

    Article  Google Scholar 

  76. Ribbers, H., Lopata, R. G., Holewijn, S., Pasterkamp, G., Blankensteijn, J. D., & de Korte, C. L. (2007). Noninvasive two-dimensional Strain Imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound in Medicine & Biology, 33(4), 530–540

    Article  Google Scholar 

  77. Hansen, H. H., Lopata, R. G., & de Korte, C. L. (2009). Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms. IEEE Transactions on Medical Imaging, 28(6), 872–880

    Article  Google Scholar 

  78. de Korte, C. L., Hansen, H. H., & van der Steen, A. F. (2011). Vascular ultrasound for atherosclerosis imaging. Interface Focus, 1(4), 565–575

    Article  Google Scholar 

  79. Shi, H., Mitchell, C. C., McCormick, M., Kliewer, M. A., Dempsey, R. J., & Varghese, T. (2008). Preliminary in vivo atherosclerotic carotid plaque characterization using the accumulated axial strain and relative lateral shift strain indices. Physics in Medicine & Biology, 53(22), 6377–6394

    Article  Google Scholar 

  80. Zahnd, G., Vray, D., Sérusclat, A., Bartold, M., Brown, A., Durand, M., et al. (2012). Longitudinal displacement of the carotid wall and cardiovascular risk factors: Associations with aging, adiposity, blood pressure and periodontal disease independent of cross-sectional distensibility and intima-media thickness. Ultrasound in Medicine & Biology, 38(10), 1705–1715

    Article  Google Scholar 

  81. Naim, C., Cloutier, G., Mercure, E., Destrempes, F., Qin, Z., El-Abyad, W., et al. (2013). Characterisation of carotid plaques with ultrasound elastography: Feasibility and correlation with high-resolution magnetic resonance imaging. European Radiology, 23(7), 2030–2041

    Article  Google Scholar 

  82. Wan, J., He, F., Zhao, Y., Zhang, H., Zhou, X., & Wan, M. (2014). Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound. Ultrasound in Medicine & Biology, 40(3), 622–636

    Article  Google Scholar 

  83. Huang, C., Pan, X., He, Q., Huang, M., Huang, L., Zhao, X., et al. (2016). Ultrasound-based carotid elastography for detection of vulnerable atherosclerotic plaques validated by magnetic resonance imaging. Ultrasound in Medicine & Biology, 42(2), 365–377

    Article  Google Scholar 

  84. Roy Cardinal, M. H., Heusinkveld, M. H. G., Qin, Z., Lopata, R. G. P., Naim, C., Soulez, G., et al. (2017). Carotid artery plaque vulnerability assessment using noninvasive ultrasound elastography: Validation With MRI. American Journal of Roentgenology., 209(1), 142–151

    Article  Google Scholar 

  85. Ramnarine, K. V., Garrard, J. W., Kanber, B., Nduwayo, S., Hartshorne, T. C., & Robinson, T. G. (2014). Shear wave elastography imaging of carotid plaques: Feasible, reproducible and of clinical potential. Cardiovascular Ultrasound, 12, 49

    Article  Google Scholar 

  86. Zhang, L., Yong, Q., Pu, T. N., & Lin, J. (2016). Quantitative assessment of carotid atherosclerotic plaque: Initial clinical results using Shear wave elastography. International Journal of Clinical and Experimental Medicine, 9(6), 9347–9355

    Google Scholar 

  87. Marlevi, D., Mulvagh, S. L., Huang, R., DeMarco, J. K., Ota, H., Huston, J., 3rd., et al. (2020). Combined spatiotemporal and frequency-dependent shear wave elastography enables detection of vulnerable carotid plaques as validated by MRI. Scientific Reports, 10, 403

    Article  Google Scholar 

  88. Pruijssen, J. T., de Korte, C. L., Voss, I., & Hansen, H. H. G. (2020). Vascular shear wave elastography in atherosclerotic arteries: A systematic review. Ultrasound in Medicine & Biology, 46(9), 2145–2163

    Article  Google Scholar 

  89. V, RK., Nabeel, P,. M., Joseph, J., Frese, H., Sivaprakasam, M. (2019). Multimodal Image-Free Ultrasound Technique for Evaluation of Arterial Viscoelastic Properties: A Feasibility Study. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, 5034–5037.

  90. Liu, Z., Bai, Z., Huang, C., Huang, M., Huang, L., Xu, D., et al. (2019). Interoperator reproducibility of carotid elastography for identification of vulnerable atherosclerotic plaques. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66(3), 505–516

    Article  Google Scholar 

  91. Schmitt, C., Hadj Henni, A., & Cloutier, G. (2010). Ultrasound dynamic micro-elastography applied to the viscoelastic characterization of soft tissues and arterial walls. Ultrasound in Medicine & Biology, 36(9), 1492–1503

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (Grant Number: NRF-2020R1A2C1004354).

Funding

NRF-2020R1A2C1004354

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyehan Rhee.

Ethics declarations

Conflict of Interest

The author declare that they don’t have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhee, K., Cho, Y. Artery Wall Viscoelasticity: Measurement, Assessment, and Clinical Implications. Int. J. Precis. Eng. Manuf. 22, 1157–1168 (2021). https://doi.org/10.1007/s12541-021-00533-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00533-x

Keywords

Navigation