Skip to main content

Advertisement

Log in

Rosselia ichnofabrics from the Lower Ordovician of the Alborz Mountains (northern Iran): palaeoecology, palaeobiology and sedimentology

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The trace fossil Rosselia with its dominant species Rosselia socialis is found with various densities in both open-marine and delta systems of the Lower Ordovician Lashkerak Formation (Alborz, Iran). The trace fossil shows two types of occurrence in these two depositional systems: solitary Rosselia and crowded Rosselia ichnofabric (CRI). On a proximal-to-distal transect, solitary Rosselia occurs during long-term stable conditions with enriched bottom currents in areas above storm-wave base together with a fair-weather community of dwellers and followed equilibrium strategies (K-selected). In shallower parts, in substrates around and below fair-weather wave base with high amount of deposition and erosion, dense populations of Rosselia (CRI) occur together with subordinate trace-fossil suites (such as Diplocraterion, Skolithos and Arenicolites) produced by deep-tier, suspension-feeding animals due to short-term stable conditions with low food flux. Solitary Rosselia, with lifelong activity due to sophisticated feeding strategies, are well developed in storm deposits, and are part of shallow tiers. Forms with concentric muddy laminae indicate long-term occupation and belong to the Cruziana ichnofacies. In contrast, the behavioural style of the studied CRI, which occurs in unstable, high stress, physically controlled substrates, is comparable to the Skolithos ichnofacies in the occurrence of equilibration traces with stacked segments. In terms of sequence stratigraphy, the transgressive system tract (TST) with lower amounts of organic detritus and low accumulation rates favours the development of solitary Rosselia. In this system tract, CRI is developed during times of ravinement when winnowing and erosion led to the early development of unstable substrates. However, most occurrences of CRI are observed within the progradational packages of the highstand system tract (HST). This study suggests that CRI in event beds can be a good signature of low accommodation space and prograding clinoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aghanabati, A. (2004). Geology of Iran (pp. 1-434). Tehran: Geological Survey of Iran. [in Persian]

  • Bann, K.L., & Fielding, C.R. (2004) An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia. In D. McIlroy. (Ed.). The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publication 228, 273-310.

  • Bayet-Goll, A., Nazarian Samani, P., Neto de Carvalho, C., Monaco, P., Khodaie, N., Morad Pour, M., Kazemeini, H., & Zareiyan, M.H. (2017). Sequence stratigraphy and ichnology of Early Cretaceous reservoirs, Gadvan formation in southwestern Iran. Marine and Petroleum Geology, 81, 294–319.

  • Bayet-Goll, A., & Daraei, M. (2020). Palaeoecological, sedimentological and stratigraphical insights into microbially induced sedimentary structures of the lower Cambrian successions of Iran. Sedimen-tology, 67, 3199–3235.

  • Bayet-Goll, A., & Neto De Carvalho, C. (2017). Sedimentological and ichnological characteristics of deltaic and non-deltaic successions of the Lower Ordovician of Shahmirzad area, Alborz Mountains of northern Iran. Bollettino della Societa Paleontologica Italiana, 56, 127–151.

    Google Scholar 

  • Bayet-Goll, A., & Neto De Carvalho, C. (2020). Architectural evolution of a mixed-influenced deltaic succession: Lower-to-Middle Ordovician Armorican Quartzite in the southwest Central Iberian Zone, Penha Garcia Formation (Portugal). International Journal of Earth Sciences (Geologische Rundschau), 109, 2495–2526.

    Article  Google Scholar 

  • Bayet-Goll, A., Geyer, G., Wilmsen, M., Mahboubi, A., & Moussavi-Harami, R. (2014). Facies architecture, depositional environments and stratigraphy of the Middle Cambrian Fasham and Deh-Sufiyan formations in the central Alborz, Iran. Facies, 60, 815–841.

    Article  Google Scholar 

  • Bayet-Goll, A., Geyer, G., & Daraei, D. (2018a). Tectonic and eustatic controls on the spatial distribution and stratigraphic architecture of late early Cambrian successions at the northern Gondwana margin: The siliciclastic-carbonate successions of the Lalun Formation in central Iran. Marine and Petroleum Geology, 98, 199–228.

    Article  Google Scholar 

  • Bayet-Goll, A., Neto De Carvalho, C., Daraei, M., Monaco, P., & Sharafi, M. (2018b). Sequence stratigraphic and sedimentologic significance of the trace fossil Rhizocorallium in the Upper Triassic Nayband Formation, Tabas Block, Central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 196–217.

    Article  Google Scholar 

  • Bayet-Goll, A., Daraei, M., Parvin Mousavi Taher, S., Etemad-Saeed, N., Neto de Carvalho, C., Zandkarimi, K., Monaco, P., Zohdi, A., Rabbani, J., & Nasiri, Y. (2020a). Variations of the trace fossil Zoophycos with respect to paleoenvironment and sequence stratigraphy in the Mississippian Mobarak Formation, northern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 551, 109754.

    Article  Google Scholar 

  • Bayet-Goll, A., Uchman, A., Daraei, M., & Neto De Carvalho, C. N. (2020b). Crowded Trichophycus ichnofabrics in the early Ordovician successions of central Iran: Insight into the Ordovician radiation. Lethaia, 1–16. https://doi.org/10.1111/let.12404.

  • Bayet-Goll, A., Daraei, M., Geyer, G., Bahrami, N., & Bagheri, F. (2021). Environmental constraints on the distribution of matground and mixground ecosystems across the Cambrian Series 2–Miaolingian boundary interval in Iran: A case study for the central sector of northern Gondwana. Journal of African Earth Sciences, 176, 104120. https://doi.org/10.1016/j.jafrearsci.2021.104120.

    Article  Google Scholar 

  • Bhattacharya, J. P., & MacEachern, J. A. (2009). Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research, 79, 184–209.

    Article  Google Scholar 

  • Bromley, R. G. (1996). Trace fossils: Biology, taphonomy and applications (pp. 1-361). Chapman and Hall.

  • Buatois, L. A., & Mángano, M. G. (2011). Organism–substrate interactions in space and time (pp. 1-370). Cambridge University Press.

  • Buatois, L. A., Saccavino, L. L., & Zavala, C. (2010). Ichnologic signatures of hyperpycnal-flow deposits in Cretaceous river-dominated deltas, Austral Basin, southern Argentina. In R. M. Slatt & C. Zavala (Eds.), Sediment transfer from shelf to deep water — Revisiting the delivery system. The American Association of Petroleum Geologists Studies in Geology 61, 1–18.

  • Buatois, L. A., García-Ramos, J. C., Piñuela, L., Mángano, M. G., & Rodríguez-Tovar, F. J. (2016). Rosselia socialis from the Ordovician of Asturias (Northern Spain) and the early evolution of equilibrium behavior in polychaetes. Ichnos, 23, 147–155.

    Article  Google Scholar 

  • Campbell, K. A., Nesbitt, E. A., & Bourgeois, J. (2006). Signatures of storms, oceanic floods and forearc tectonism in marine shelf strata of the Quinault Formation (Pliocene), Washington, USA. Sedimen-tology, 53, 945–969.

  • Campbell, S. G., Botterill, S. E., Gingras, M. K., & MacEachern, J. A. (2016). Event sedimentation, deposition rate, and paleoenvironment using crowded Rosselia assemblages of the Bluesky Formation, Alberta, Canada. Journal of Sedimentary Research, 86, 380–393.

    Article  Google Scholar 

  • Catuneanu, O. (2006). Principles of sequence stratigraphy. Elsevier.

  • Dahmer, G. (1937). Lebensspuren aus dem Taunusquartzit und den Siegener Schichten (Unterdevon). Preussische Geologische Landesanstalt Berlin, 57, 523–539.

  • Desjardins, P. R., Mángano, M. G., Buatois, L. A., & Pratt, B. R. (2010). Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: Colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia, 43, 507–528.

    Article  Google Scholar 

  • Droser, M. L. (1991). Ichnofabric of the Paleozoic Skolithos ichnofacies and the nature and distribution of Skolithos piperock. Palaios, 6, 316–325.

    Article  Google Scholar 

  • Ekdale, A. A., Bromley, R. G., & Pemberton, S. G. (1984). Ichnology: The use of trace fossils in sedimentology and stratigraphy. Society of Economic Geologists and Paleontologists, Short Course, 15, 1–317.

    Google Scholar 

  • Ekdale, A. A., Bromley, R. G., & Knaust, D. (2012). The ichnofabric concept. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology (Vol. 64, pp. 139–155). Elsevier.

  • Fauchald, K., & Jumars, P. A. (1979). The diet of worms: A study of polychaete feeding guilds. Oceanography and Marine Biology. Annual Review, 17, 193–284.

    Google Scholar 

  • Frieling, D. (2007). Rosselia socialis in the Upper Marine Molasse of southwestern Germany. Facies, 53, 479–492.

    Article  Google Scholar 

  • Geyer, G., Bayet-Goll, A., Wilmsen, M., Mahboubi, A., & Moussavi-Harami, R. (2014). Lithostratigraphic revision of the middle and upper Cambrian (Furongian) in northern and central Iran. Newsletters on Stratigraphy, 47, 21–59.

    Article  Google Scholar 

  • Ghavidel-syooki, M., & Vecoli, M. (2007). Latest Ordovician-early Silurian Chitinozoans from the Eastern Alborz mountain Range, Kopeh-Dagh region, northeastern Iran: Biostratigraphy and palaeobiogeography. Review of Palaeobotany and Palynology, 145, 173–192.

    Article  Google Scholar 

  • Ghobadi Pour, M. (2019). Ordovician trilobites from Deh-Molla, eastern Alborz, Iran. Alcheringa, 43, 381–405.

    Article  Google Scholar 

  • Ghobadi Pour, M., & Turvey, S. T. (2009). Revision of some Lower to Middle Ordovician leiostegiid trilobites from Iran and China. Memoirs of the Australian Association of Australasian Palaeon-tologists, 37, 463–480.

  • Ghobadi Pour, M., Kebriaee-Zadeh, M. R., & Popov, L. E. (2011). Early Ordovician (Tremadocian) brachiopods from Eastern Alborz Mountains, Iran. Estonian Journal of Earth Sciences, 60, 65–82.

    Article  Google Scholar 

  • Gingras, M. K., MacEachern, J. A., & Dashtgard, S. E. (2011). Process ichnology and the elucidation of physico-chemical stress. Sedimentary Geology, 237, 115–134.

    Article  Google Scholar 

  • Goldring, R. (1995). Organisms and the substrate: Response and effect. In D.W.J. Bosence, & A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils. Geological society, London, Special Publications, 83,151-180.

  • Haq, B. U., & Schutter, S. R. (2008). A chronology of Paleozoic sea-level changes. Science, 322, 64–68.

    Article  Google Scholar 

  • Hofmann, R., Mángano, M. G., Elicki, O., & Shinaq, R. (2012). Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. Journal of Paleontology, 86, 931–955.

    Article  Google Scholar 

  • Knaust, D. (2012a). Trace-fossil systematics. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64 (pp. 79–101). Elsevier.

  • Knaust, D. (2012b). Methodology and techniques. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64 (pp. 245–271). Elsevier.

  • Knaust, D. (2017). Atlas of trace fossils in well core: Appearance, taxonomy and interpretation. Springer 209 p.

  • Knaust, D. (2019). Ichnofabric. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.12051-2.

  • Luo, M., Shi, G. R., Lee, S., & Yang, B. (2017). A new trace fossil assemblage from the Middle Permian Broughton Formation, southern Sydney Basin (southeastern Australia): Ichnology and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 455–465.

    Article  Google Scholar 

  • MacEachern, J. A., & Bann, K. L. (2020). The Phycosiphon Ichnofacies and the Rosselia Ichnofacies: Two new ichnofacies for marine deltaic environments. Journal of Sedimentary Research, 90, 855–886. doi: https://doi.org/10.2110/jsr.2020.41

  • MacEachern, J. A., Bann, K. L., Bhattacharya, J. P., & Howell, C. D. (2005). Ichnology of deltas: Organism responses to the dynamic in replay of rivers, waves, storms, and tides. In L. Giosan & J.P. Bhattacharya (Eds.). River deltas: Concepts, models and examples: SEPM Special Publication, 83, 49–85.

    Article  Google Scholar 

  • MacEachern, J. A., Bann, K. L., Pemberton, S. G., & Gingras, M. K. (2007a). The ichnofacies paradigm: High-resolution paleoenvironmental interpretation of the rock record. In J. A. MacEachern, K. L. Bann, M. K. Gingras, & S.G. Pemberton, (Eds.). Applied Ichnology: SEPM Short Course Notes, 52, 27–64.

  • MacEachern, J. A., Pemberton, S. G., Bann, K. L., & Gingras, M. K. (2007b). Departures from the archetypal ichnofacies: Effective recognition of physico-chemical stresses in the rock record. In J. A. MacEachern, K. L. Bann,  M. K. Gingras, & S. G. Pemberton  (Eds.). Applied Ichnology: SEPM Short Course Notes, 52, 65–94.

  • Mulder, T., & Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299.

  • Mángano, M.G., Buatois, L.A., Wilson, M., & Droser, M.L. (2016). The Great Ordovician Biodiversification Event. In M. G. Mángano, & L. A. Buatois  (Eds.), The trace-fossil record of major evolutionary events. Volume 1: Precambrian and Paleozoic. Springer-Verlag, Berlin. Topics in Geobiology 39, 127–156.

  • Miller Iii, W., & Aalto, K. R. (2008). Rosselia ichnofabric in the Miocene Pullen Formation, northwestern California: Implications for the interpretation of regional tectonics. Palaios, 23, 329–335.

    Article  Google Scholar 

  • Nara, M. (1995). Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia, 28, 171–178.

    Article  Google Scholar 

  • Nara, M. (1997). High-resolution analytical method for event sedimentation using Rosselia socialis. Palaios, 12, 489–494.

    Article  Google Scholar 

  • Nara, M. (2002). Crowded Rosselia socialis in Pleistocene inner shelf deposits: Benthic paleoecology during rapid sea-level rise. Palaios, 17, 268–276.

    Article  Google Scholar 

  • Netto, R. G., Tognoli, F. M. W., Assine, M. L., & Nara, M. (2014). Crowded Rosselia ichnofabric in the Early Devonian of Brazil: An example of strategic behavior. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 107–113.

  • Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., Maceachern, J.A., Robbins, D., & Sinclair, I.K. (2001). Ichnology and sedimentology of shallow to marginal marine systems. Short Course Notes, 15. Geological Association of Canada, Calgary.

  • Popov, L.E., Ghobadi Pour, M. & Hosseini, M. (2008). Early to Middle Ordovician lingulate brachiopods from the Lashkarak Formation, Eastern Alborz Mountains, Iran. Alcheringa 32, 1–35.

  • Pollard, J. E., Goldring, R., & Buck, S. G. (1993). Ichnofabrics containing Ophiomorpha: Significance in shallow-water facies interpretation. Geological Society, London, Special Publications, 150, 149–164.

    Article  Google Scholar 

  • Rodrìguez-Tovar, F. J. R., Valera, F. P., & López, A. P. (2007). Ichnological analysis in high-resolution sequence stratigraphy: The Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sedimentary Geology, 198, 293–307.

  • Rouse, G. W., & Pleijel, F. (2001). Polychaetes. Oxford University Press.

  • Seilacher, A. (2007). Trace fossil analysis. Springer Verlag.

  • Seilacher, A. (1967) Bathymetry of trace fossils. Marine Geology 5 (5-6):413-428

  • Servais, T., & Harper, D. A. T. (2018). The Great Ordovician Biodiversification Event (GOBE): Definition, concept and duration. Lethaia, 51, 151–164.

    Article  Google Scholar 

  • Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Geological Society, London, Special Publications, 150, 141–148.

    Article  Google Scholar 

  • Torsvik, T. H., & Cocks, L. R. (2013). Gondwana from top to base in space and time. Gondwana Research, 24, 999–1030.

    Article  Google Scholar 

  • Uchman, A., & Krenmayr, H. G. (1995). Trace fossils from the lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift, 69, 503–524.

    Article  Google Scholar 

  • Uchman, A., & Krenmayr, H. G. (2004). Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene Molasse of Upper Austria. Jahrbuch der Geologischen Bundesanstalt, 144, 233–251.

    Google Scholar 

  • Vermeij, G. J. (1978). Biogeography and adaptation: Patterns of marine life. Harvard University Press.

  • Zecchin, M., & Catuneanu, O. (2013). High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Marine and Petroleum Geology, 39, 1–25.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the journal reviewers Carlton E. Brett (University of Cincinnati, USA) and Renata Netto (Unisinos University, Brazil) as well as the journal editor Peter Koenigshof for their helpful comments and constructive criticism that greatly improved this paper.

Funding

Financial support and field expenses are provided by the Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran); otherwise, there was no specific grant funding for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram Bayet-Goll.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayet-Goll, A., Knaust, D., Daraei, M. et al. Rosselia ichnofabrics from the Lower Ordovician of the Alborz Mountains (northern Iran): palaeoecology, palaeobiology and sedimentology. Palaeobio Palaeoenv 102, 103–128 (2022). https://doi.org/10.1007/s12549-021-00493-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-021-00493-0

Keywords

Navigation