Skip to main content
Log in

Galactooligosaccharide and a combination of yeast and β-glucan supplements enhance growth and improve intestinal condition in striped catfish Pangasianodon hypophthalmus fed soybean meal diets

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The effects of galactooligosaccharide (GOS) and a combination of yeast and β-glucan (YβG) supplementation of dietary soybean meal (SBM) on the growth and digestive performance of striped catfish Pangasianodon hypophthalmus were evaluated. Four isonitrogenous (30% protein) and isocaloric (19 MJ/kg diet) diets were formulated to contain 100% fish meal (FM) protein, 55% FM protein/45% SBM protein, FM-SBM supplemented with 1% GOS, and a combination of 1% yeast and 0.1% β-glucan, respectively. Each diet was fed for 12 weeks to three groups of 30 striped catfish fingerlings (average weight 16.45 ± 0.07 g) maintained in circular fiberglass tanks (600 l). Growth, feed utilization, and muscle protein composition of fish improved significantly after supplementation with either GOS or YβG compared to the unsupplemented SBM diet, but were similar to those of fish fed the FM diet. Nutrient digestibility, digestive enzyme activities, villi and microvilli length were significantly increased in fish fed the supplemented SBM diets. The gut microbiota ranking profile showed that supplementing the SBM diet with YβG and GOS gave a ranking of Verrucomicrobia, Spirochaetes, Bacteriodetes, and Actinobacteria phyla similar to that of the FM diet. Thus, diet containing 45% protein from soybean supplemented with either GOS or YβG can be recommended to improve the growth and digestive performance of striped catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Elala N, Marzouk M, Moustafa M (2013) Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int J Vet Sci Med 1:21–29

    Article  Google Scholar 

  • Akter MN, Sutriana A, Talpur AD, Hashim R (2015) Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish, Pangasianodon hypophthalmus. Aquac Int. https://doi.org/10.1007/s10499-015-9913-8

    Google Scholar 

  • Anguiano M, Pholenz C, Buentello A, Gatlin DM III (2013) The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops × M. saxatilis). Br J Nutr 109:625–629

    Article  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (1997) Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 16th edn, vol 1. AOAC, Arlington, VA

  • Askarian F, Kousha A, Salma W, Ringø E (2011) The effect of lactic acid bacteria administration on growth, digestive enzymes activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquac Nutr 17:488–497

    Article  Google Scholar 

  • Backhed F (2011) Programming of host metabolism by the gut microbiota. Ann Nutr Metab 58:44–52

    Article  PubMed  Google Scholar 

  • Baeverfjord G, Krogdahl A (1996) Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J Fish Dis 19:375–387

    Article  Google Scholar 

  • Bakke-McKellep AM, Press CM, Baeverfjord G, Krogdahl A, Landsverk T (2000) Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal-induced enteritis. J Fish Dis 23:115–127

    Article  Google Scholar 

  • Bier M (1955) Lipases. Methods in enzymology. I. Academic Press, New York

    Google Scholar 

  • Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12:303–310

    Article  CAS  PubMed  Google Scholar 

  • Biswas KA, Kaku H, Ji SC, Seoka M, Takii K (2007) Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture 267:284–291

    Article  CAS  Google Scholar 

  • Blumberg R, Powrie F (2012) Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4(13rv7):1377. https://doi.org/10.1126/scitranslmed.3004184

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buentello JA, Neill WH, Gatlin DM III (2010) Effects of dietary prebiotics on the growth, feed efficiency and non-specific immunity of juvenile red drum (Sciaenops ocellatus) fed soybean based diets. Aquac Res 41:411–418

    Article  CAS  Google Scholar 

  • Burr G, Hume M, Neil WH, Gatlin DM III (2008) Effects of prebiotics on nutrient digestibility of a soybean meal based diet by red drum Sciaenops ocellatus (Linnaeus). Aquac Res 39:1680–1686

    CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J6:1621–1624

    Article  Google Scholar 

  • Clavel T, Desmarchelier C, Haller D, Gérard P, Rohn S, Lepage P, Daniel H (2014) Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance. Gut Microbes 5(4):544–551

    Article  PubMed  Google Scholar 

  • Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304:49–57

    Article  CAS  Google Scholar 

  • Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1(1):1–29

    Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaun). J Anim Sci 87:3226–3234

    Article  CAS  PubMed  Google Scholar 

  • Dimitroglou A, Reynolds P, Ravnoy B, Johnsen F, Sweetman JW, Johansen J, Davies SJ (2011) The effect of mannan oligosaccharide supplementation on Atlantic salmon smolts (Salmo salar L.) fed diets with high levels of plant proteins. J Aquac Res. https://doi.org/10.4172/2155-9546.S1-011

    Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Furukawa A, Tsukuhara H (1966) On the acid digestion method for determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull Jpn Soc Sci Fish 32:502–506

    Article  CAS  Google Scholar 

  • Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella typhimurium infected gnotobiotic mice. PLoS One 8(9):e74963. https://doi.org/10.1371/journal.pone.0074963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraylou Z, Souffreau C, Rurangwa E, Maes GE, Spanier KI, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013) Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol Ecol 86:357–371

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner T, Backhed F (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22:117–123

    Article  CAS  PubMed  Google Scholar 

  • Grisdale-Helland B, Helland SJ, Gatlin DM (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283:163–167

    Article  CAS  Google Scholar 

  • Gullian M, Thompson F, Rodriguez J (2004) Selection of probiotic bacteria and study of their immunostimulatory effect in Penaus vannamei. Aquaculture 233:1–4

    Article  Google Scholar 

  • Hoseinifar SH, Khalili M, Rostami HK, Esteban MA (2013) Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 35:1416–1420

    Article  CAS  PubMed  Google Scholar 

  • Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642

    Article  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Krogdahl A, Bakke-McKellep AM, Baeverfjord G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr 9:361–371

    Article  Google Scholar 

  • Kühlwein H, Merrifield DL, Rawling MD, Foey AD, Davies SJ (2014) Effects of dietary β-(1,3) (1,6)-d-glucan supplementation on growth performance, intestinal morphology and haemato-immunological profile of mirror carp (Cyprinus carpio L.). J Anim Physiol Anim Nutr 98:279–289

    Article  Google Scholar 

  • Lewis PR, Knight DP (1977) Staining methods for sectioned material. In: Glauert AM (ed) Practical methods in electron microscopy, vol 5. Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Li P, Gatlin DM III (2005) Evaluation of the prebiotic Grobiotic-A and brewer’s yeast as dietary supplements for sub-adult hybrid striped bass (Morone chrysops × M. Saxatilis) challenged in situ with Mycobacterium marinum. Aquaculture 248:197–205

    Article  CAS  Google Scholar 

  • Merrifield DL, Harper GM, Mustafa S, Carnevali O, Picchietti S, Davies SJ (2011) Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance, intestinal histology and growth performance. Cell Tissue Res 344:135–146

    Article  CAS  PubMed  Google Scholar 

  • Oliva-Teles A, Gouveia A, Gomes E, Rema P (1994) The effect of different processing treatments on soybean meal utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture 124:343–349

    Article  Google Scholar 

  • Phumee P, Wei WY, Ramachandran S, Hashim R (2011) Evaluation of soybean meal in the formulated diets for juvenile Pangasianodon hypophthalmus (Sauvage, 1878). Aquac Nutr 17:214–222

    Article  CAS  Google Scholar 

  • Piccolo G, Centoducati G, Bovera F, Marrone R, Nizza A (2013) Effects of mannan oligosaccharide and inulin on sharpsnout seabream (Diplodus puntazzo) in the context of partial fish meal substitution by soybean meal. Ital J Anim Sci 12:133–138

    Article  CAS  Google Scholar 

  • Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428

    Article  CAS  PubMed  Google Scholar 

  • Refstie S, Storebakken T, Roem AJ (1998) Feed consumption and conversion in Atlantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture 162:301–312

    Article  CAS  Google Scholar 

  • Ringø E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Aquaculture 160:177–203

    Article  Google Scholar 

  • Ringø E, Olsen RE, Gifstad TØ, Dalmo RA, Amlund H, Hemre GI, Bakke AM (2010) Prebiotics in aquaculture: a review. Aquac Nutr 16:117–136

    Article  Google Scholar 

  • Rumsey GL, Siwicki AK, Anderson DP, Bowser PR (1994) Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout. Vet Immunol Immunopathol 41:323–339

    Article  CAS  PubMed  Google Scholar 

  • Sang HM, Fotedar R (2010) Effects of mannan oligosaccharide dietary supplementation on performances of the tropical spiny lobster juvenile (Panulirus ornatus). Fish Shellfish Immunol 28:483–489

    Article  CAS  PubMed  Google Scholar 

  • Sealey WM, Barrows FT, Smith CE, Hardy RW (2010) Dietary supplementation strategies to improve performance of rainbow trout Oncorhynchus mykiss fed plant-based diets. Bull FRA 31:15–23

    Google Scholar 

  • Smith CJ, Rocha ER, Paster BJ (2006) The medically important Bacteroides spp. in health and disease. Prokaryotes 7:38–427

    Google Scholar 

  • Smriga S, Sandin SA, Azam F (2010) Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol 73:31–42

    CAS  PubMed  Google Scholar 

  • Sutriana A (2017). The use of selected prebiotics and probiotic in feed development for striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) juveniles: effects on growth parameters and health status. Ph.D. dissertation, Universiti Sains Malaysia, Malaysia

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Uran PA, Goncalves AA, Taverne-Thiele JJ, Schrama JW, Verreth JA (2008) Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 25:751–760

    Article  CAS  PubMed  Google Scholar 

  • van den Ingh TS, Krogdahl A, Olli JJ, Hendriks HG, Koninkx JG (1991) Effects of soybean-containing diets on the proximal and distal intestines in Atlantic salmon (Salmo salar): a morphological study. Aquaculture 94:297–305

    Article  Google Scholar 

  • van den Ingh TSGAM, Olli JJ, Krogdahl Å (1996) Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmo Salar L. J Fish Dis 19:47–53

    Article  Google Scholar 

  • van der Meulen R, Makras L, Verbrugghe K, Adriany T, De Vuyst L (2006) In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl Environ Microbiol 72(2):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kessel MAHJ, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten SM, Klaren PHM, den Camp HJO (2011) Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express 1:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51:101–1112

    Article  Google Scholar 

  • Wache Y, Auffray F, Gatesoupe FJ, Zambonimo J, Gayet V, Labbe L, Quentel C (2006) Cross effect of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Oncorhynchus mykiss fry. Aquaculture 258:470–478

    Article  Google Scholar 

  • Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 5. Chemie, Weinheim, pp 270–277

    Google Scholar 

  • Worthington Enzyme Manual (1988) Alpha amylase. In: Worthington CC (ed) Enzyme and related biochemicals. Worthington Biochemical Corporation, Freehold, NJ, p 346

    Google Scholar 

  • Yamamoto T, Unuma T, Akiyama T (1998) Postprandial changes in plasma free amino acid concentrations of rainbow trout fed diets containing different protein sources. Fish Sci 64:474–481

    Article  CAS  Google Scholar 

  • Yilmaz E, Genc MA, Genc E (2007) Effects of dietary mannan oligosaccharides on growth, body composition, and intestine and liver histology of rainbow trout, Oncorhynchus mykiss. Isr J Aquac Bamidgeh 59:182–188

    Google Scholar 

  • Zhou QC, Buentello JA, Gatlin DM III (2010) Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture 309:253–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to technical staff at the School of Biological Sciences, Universiti Sains Malaysia. We are grateful to Friesland Foods for supplying Vivinal GOS and to Biorigin, Macrogard for the β-glucan. This study was supported by the Malaysian Ministry of Higher Education ERGS grant no. 203/PBIOLOGY/6730134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Sutriana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutriana, A., Hashim, R., Akter, M.N. et al. Galactooligosaccharide and a combination of yeast and β-glucan supplements enhance growth and improve intestinal condition in striped catfish Pangasianodon hypophthalmus fed soybean meal diets. Fish Sci 84, 523–533 (2018). https://doi.org/10.1007/s12562-018-1195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-018-1195-4

Keywords

Navigation