Skip to main content

Advertisement

Log in

Mg-rich calcite-producing marine bacterium Pseudovibrio sp. isolated from an ascidian in coral reefs at Okinawa, Japan

  • Original Article
  • Environment
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Since the beginning of the last century, bacteria, including cyanobacteria, have been known to be involved in the extracellular formation and precipitation of CaCO3. It is also known that some marine bacteria form calcite granules in Ca-containing artificial media. However, a detailed analysis of these granules has not yet been performed. The objective of the present study was to isolate marine bacteria that form CaCO3 granules in a culture medium to analyze the structure of the granules in detail. Pseudovibrio sp. 01OK 105-5-5, belonging to the class Alphaproteobacteria, was isolated from an ascidian in a coral reef at On-na, Okinawa, Japan. It produced extracellular granules of CaCO3 in a Ca-containing artificial medium. X-ray diffraction analysis, infrared spectroscopy, and inductively coupled plasma atomic emission spectrometry demonstrated that the extracellular granules contained Mg-rich calcite-like crystal polymorphs. This crystal form of CaCO3 was similar to that of Mg-rich calcite found in the skeletons of many marine invertebrates. This bacterium provides a promising tool for studying the mechanisms involved in the formation of Mg-rich biogenic calcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aizenberg J, Lambert G, Weiner S, Addadi L (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529

    Article  Google Scholar 

  • Buck JD, Greenfield LJ (1964) Calcification in marine-occurring yeasts. Bull Mar Sci Gulf Carib 14:239–245

    CAS  Google Scholar 

  • Drew GH (1913) On the precipitation of calcium carbonate in the sea by marine bacteria, and on the action of denitrifying bacteria in tropical and temperate seas. J Mar Biol Ass 9:479–524

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Ferrer MR, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado R, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227

    Article  CAS  Google Scholar 

  • Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ueolytic subsurface bacteria. Geomicrobiol J 17:305–318

    Article  CAS  Google Scholar 

  • Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kitano Y, Hood DW (1962) Calcium carbonate crystal forms formed from seawater by inorganic processes. J Oceanogr Soc Jpn 18:141–145

    Article  Google Scholar 

  • Kogure K, Ikemoto E, Morisaki H (1998) Attachment of Vibrio alginolyticus to glass surfaces is dependent on swimming speed. J Bacteriol 180:932–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar JPJ, Babu BR, Nandhagopal G, Ragumaran S, Ramakritinan CM, Ravichandran V (2019) In vitro synthesis of bio-brick using locally isolated marine ureolytic bacteria, a comparison with natural calcareous rock. Ecol Eng 138:97–105

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Book  Google Scholar 

  • McCallum MF, Guhathakurta K (1970) The precipitation of calcium carbonate from seawater by bacteria isolated from Bahama Bank sediments. J Appl Bacteriol 33:649–655

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1980) Calcite precipitation by marine bacteria∗. Geomicrobiol J 2:63–82

    Article  CAS  Google Scholar 

  • Nishino T, Ikemoto E, Kogure K (2004) Application of atomic force microscopy to observation of marine bacteria. J Oceanogr 60:219–225

    Article  Google Scholar 

  • Novitsky JA (1981) Calcium carbonate precipitation by marine bacteria. Geomicrobiol J 2:375–388

    Article  CAS  Google Scholar 

  • Oomori T, Tokuyama A, Oode S (1988) The coral reefs of Okinawa. In: Nishihira M (ed) The coral reefs of Okinawa. Okinawa Prefecture Environment Science Center, Okinawa, pp 51–65 ((in Japanese))

    Google Scholar 

  • Paerl HW, Steppe TF, Reid RP (2001) Bacterially mediated precipitation in marine stromatolites. Environ Microbiol 3:123–130

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Zhao H, Tucker ME, Zhou J, Jiang M, Wang Y, Zhao Y, Sun B, Han Z, Yan H (2019) Biomineralization of monohydrocalcite induced by the halophile Halomonas smyrnensis WMS-3. Minerals 9:632

    Article  CAS  Google Scholar 

  • Rautaray D, Ahmad A, Sastry M (2003) Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. J Am Chem Soc 125:14656–14657

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra MA, Delgado R, Delgado G, Moral AD, Ferrer MR, Ramos-Cormenzana A (1993) Precipitation of carbonates by Bacillus sp. isolated from saline soils. Geomicrobiol J 11:175–184

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Delgado R, Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipatation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol Ecol 13:197–204

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun KB, Gonzalez-Muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shieh WY, Lin YT, Jean WD (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54:2307–2312

    Article  CAS  PubMed  Google Scholar 

  • Shinano H (1972a) Studies of marine microorganisms taking part in the precipitation of calcium carbonate-III. Nippon Suisan Gakkaishi 38:717–725

    Article  Google Scholar 

  • Shinano H (1972b) Studies of marine microorganisms taking part in the precipitation of calcium carbonate-IV. Nippon Suisan Gakkaishi 38:825–832

    Article  Google Scholar 

  • Shinano H (1972c) Studies of marine microorganisms taking part in the precipitation of calcium carbonate-V. Nippon Suisan Gakkaishi 38:833–838

    Article  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  CAS  Google Scholar 

  • Thornton DCO, Fejes EM, DiMarco SF, Clancy KM (2007) Measurement of acid polysaccharides in marine and freshwater samples using alcian blue. Limnol Oceanogr Method 5:73–87

    Article  CAS  Google Scholar 

  • Vincent J, Colin B, Lanneluc I, Sabot R, Sopéna V, Turcry P, Mahieux PY, Refait P, Jeannin M, Sablé S (2021) New biocalcifying marine bacterial strains isolated from calcareous deposits and immediate surroundings. Microorganisms 10:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Knorre H, Krumbein WE (2000) Bacteria calcification. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer-Verlag, Berlin, pp 23–31

    Google Scholar 

  • Warren LA, Mauri PA (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–115

    Article  CAS  Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the great barrier reef sponge rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Weinbauer MG, Brandstätter F, Velimirov B (2000) On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum). Mar Biol 137:801–809

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasumoto K, Yasumoto-Hirose M, Yasumoto J, Murata R, Sato S, Baba M, Mori-Yasumoto K, Jimbo M, Oshima Y, Kusumi T, Watabe S (2014) Biogenic polyamines capture CO2 and accelerate extracellular bacterial CaCO3 formation. Mar Biotechnol (NY) 16:465–474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Seiko Matsuo for providing assistance with the ICP-AES analysis and Ms. Izumi Yamashima for assistance with identification of bacterial strains. We also thank Mr. Minoru Yasumoto for providing sampling assistance. We are grateful to Prof. Tadashi Maruyama of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for reviewing the manuscript. This work was supported by The Industrial Science and Technology Project for Technology Development of Biological Resources in Bioconsortia, funded by the New Energy and Industrial Technology Development Organization of Japan; the project “Construction of a Genetic Resource Library of Unidentified Microorganisms,” funded by the Ministry of Economy, Trade and Industry of Japan; a Grant-in-Aid for Creative Basic Research No. 12NP0201 (DOBIS) funded by the Ministry of Education Culture, Sports Science, and Technology (MEXT), Japan; and by Grants-in-Aid from the Japan Society for the Promotion of Science (KAKENHI grant nos. 19K12310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Yasumoto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasumoto-Hirose, M., Yasumoto, K., Iijima, M. et al. Mg-rich calcite-producing marine bacterium Pseudovibrio sp. isolated from an ascidian in coral reefs at Okinawa, Japan. Fish Sci 88, 625–634 (2022). https://doi.org/10.1007/s12562-022-01627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-022-01627-9

Keywords

Navigation