Skip to main content
Log in

Economic assessment and review of waterless fracturing technologies in shale resource development: A case study

  • Articles
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

An Erratum to this article was published on 28 November 2017

This article has been updated

Abstract

Our database tracking of USA water usage per well indicates that traditionally shale operators have been using, on average 3 to 6 million gallons of water; even up to 8 million for the entire life cycle of the well based on its suitability for re-fracturing to stimulate their long and lateral horizontal wells. According to our data, sourcing, storage, transportation, treatment, and disposal of this large volume of water could account for up to 10% of overall drilling and completion costs. With increasingly stringent regulations governing the use of fresh water and growing challenges associated with storage and use of produced and flowback water in hydraulic fracturing, finding alternative sources of fracturing fluid is already a hot debate among both the scientific community and industry experts. On the other hand, waterless fracturing technology providers claim their technology can solve the concerns of water availability for shale development. This study reviews high-level technical issues and opportunities in this challenging and growing market and evaluates key economic drivers behind water management practices such as waterless fracturing technologies, based on a given shale gas play in the United States and experience gained in Canada. Water costs are analyzed under a variety of scenarios with and without the use of (fresh) water. The results are complemented by surveys from several oil and gas operators. Our economic analysis shows that fresh water usage offers the greatest economic return. In regions where water sourcing is a challenge, however, the short-term economic advantage of using non-fresh water-based fracturing outweighs the capital costs required by waterless fracturing methods. Until waterless methods are cost competitive, recycled water usage with low treatment offers a similar net present value (NPV) to that of sourcing freshwater via truck, for instance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 28 November 2017

    The original version of this article unfortunately contained a mistake. The presentation of an author’s name was incorrect. The corrected one is given below.

References Cited

  • Ahmed, U., Meehan, N., 2016. Unconventional Oil and Gas Resources: “Exploitation and Development”, Taylor Francis Group, Baker Hughes. [2017-09-04]. https://www.crcpress.com/Unconventional-Oil-and-Gasesources-Exploitation-and-Development/Ahmed-Meehan/p/book/9781498759403

    Google Scholar 

  • Ajayi, B., Isaac Aso, I., Jay Terry, I. J. Jr., et al., 2013. Stimulation Design for Unconventional Reservoirs. Oilfield Review, 25(2): 34–46

    Google Scholar 

  • Akhmadullin, I., 2017. Utilization of Co-Produced Water from Oil Production: Energy Generation Case. SPE Health, Safety, Security, Environment & Social Responsibility Conference––North America, April 18–20, 2017, New Orleans, Louisiana. doi:10.2118/184459-MS

    Google Scholar 

  • Alderete, I. D., Sosa-Massaro, A., D’Hers, S., 2017. A Fluid Structure Interaction Model for Hydraulic Fracture Simulation on VacaMuerta Argentina Shale Formation. SPE Health, Safety, Security, Environment & Social Responsibility Conference––North America, April 18–20, 2017. New Orleans, Louisiana. doi:10.2118/185563-MS

    Google Scholar 

  • Ali, M., Hascakir, B., 2016. Water/Rock Interaction for Eagle Ford, Marcellus, Green River, and Barnett Shale Samples and Implications for Hydraulic-Fracturing-Fluid Engineering. SPE Journal, 22(1): 162–171. doi:10.2118/177304-pa

    Article  Google Scholar 

  • Alpern, J., Marone, C., Elsworth, D., 2012. Exploring the Physicochemical Processes that Govern Hydraulic Fracture through Laboratory Experiments. American Rock Mechanics Association. The 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago. ARMA-2012-678

    Google Scholar 

  • Aniemena, C., Oraki Kohshour, I., 2017. A Fast Semi-Analytical Method for Refracturing Candidate Selection and Performance Estimation of Shale Wells. URTeC/SPE Paper Presented at the Unconventional Resources Technology Conference, July 24‒28, 2017, Austin, Texas. doi:10.15530/URTEC-2016-2693452

    Google Scholar 

  • Argonne National Laboratory, 2009. Produced Water Volumes and Management Practices in the United States. [2017-9-04]. http://www.ipd.anl.gov/anlpubs/2009/07/64622.pdf

    Google Scholar 

  • ARI, 2013. EIA/ARI World Shale Gas and Shale Oil Resource Assessment. [2017-9-04]. http://www.adv-res.com

    Google Scholar 

  • Arshadi, M., Zolfaghari, A., Piri, M., et al., 2017. The Effect of Deformation on Two-Phase Flow through Proppant-Packed Fractured Shale Samples: A Micro-Scale Experimental Investigation. Advances in Water Resources, 105: 108–131. doi:10.1016/j.advwatres.2017.04.022

    Article  Google Scholar 

  • Barati, R., 2016. Nano-Proppants for Fracture Conductivity. US Patent 20160355727 A1. [2017-9-04]. https://www.google.com/patents/US20160355727

    Google Scholar 

  • Barati, R., Hutchins, R. D., Friedel, T., et al., 2009. Fracture Impact of Yield Stress and Fracture-Face Damage on Production with a Three-Phase 2D Model. SPE Production & Operations, 24(2): 336–345. doi:10.2118/111457-pa

    Article  Google Scholar 

  • Barati, R., Liang, J. T., 2014. A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells. Journal of Applied Polymer Science, 131(16): 318–323. doi:10.1002/app.40735

    Article  Google Scholar 

  • Bennion, D. B., Bietz, R. F., Thomas, F. B., et al., 1994. Reductions in the Productivity of Oil and Low Permeability Gas Reservoirs due to Aqueous Phase Trapping. Journal of Canadian Petroleum Technology, 33(9): 45–54. doi:10.2118/94-09-05

    Article  Google Scholar 

  • Bennion, D. B., Thomas, F. B., Bietz, R. F., 1996. Low Permeability Gas Reservoirs: Problems, Opportunities and Solutions for Drilling, Completion, Stimulation and Production. SPE Paper 35577 Presented at the SPE Gas Technology Symposium, April 28–May 1, 1996, Calgary. doi:10.2118/35577-MS

    Google Scholar 

  • Bertoncello, A., Wallace, J., Blyton, C., et al., 2014. Imbibition and Water Blockage in Unconventional Reservoirs: Well-Management Implications during Flowback and Early Production. SPE Reservoir Evaluation & Engineering, 17(4): 497–506. doi:10.2118/167698-pa

    Article  Google Scholar 

  • Bizjournal, 2015. Ohio Waterless Fracking Well’s Output Lagging. [2017-9-04]. http://www.bizjournals.com/columbus/blog/ohio-energyinc/2015/05/ohio-waterless-fracking-wells-output-lagging.html

    Google Scholar 

  • Bonapace, J. C., 2015. Water Management for Tight and Shale Reservoir: A Review of What has been Learned and What should be Considered for Development in Argentina. SPE Paper 174119 Presented at the SPE Latin American and Caribbean Health, Safety, Environment and Sustainability Conference, July 7–8, 2015, Bogotá. doi:10.2118/174119-MS

    Google Scholar 

  • Bullis, K., 2013. Skipping the Water in Fracking. [2017-09-04]. https://www.technologyreview.com/s/512656/skipping-the-water-infracking/

    Google Scholar 

  • Capper, L., 2015. Exploring the Use of Water Treatment Systems for Immediate Water Reuse to Reduce Transportation, Storage and Disposal Costs–A U.S. Perspective and Market Update. http://www.lbcg.com/media/downloads/events/507/swc15-day-one-1510-laura-capper-capresources.8559.pdf.

    Google Scholar 

  • Casey, M., Rajan, S., Oraki Kohshour, I., et al., 2015. An Economic Model for Field-Wide Shale Gas Development in Saudi Arabia. SPE Paper 172945 Presented at the SPE Latin American and Caribbean Health, Safety, Environment and Sustainability Conference, July 7–8, 2015, Bogotá. doi:10.2118/172954-MS

    Book  Google Scholar 

  • Ceres, 2014. Hydraulic Fracturing Water Stress and Water Demand by the Numbers. [2017-09-04]. http://www.ceres.org/resources/reports/hydraulic-fracturing-water-stress-water-demand-by-the-numbers

    Google Scholar 

  • Charry, L., Malpani, R., Clark, B., 2016. A Step Change in the Learning Curve for Refracturing in the Eagle Ford. URTeC/SPE Paper Presented at the Unconventional Resources Technology Conference, August 1–3, 2016, San Antonio, Texas. doi:10.15530/URTEC-2016-2461344

    Book  Google Scholar 

  • Cheng, Y. M., 2012. Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractured Wells in Gas-Shale Reservoirs. Journal of Canadian Petroleum Technology, 51(2): 143–151. doi:10.2118/127863-pa

    Article  Google Scholar 

  • Cipolla, C., Wallace, J., 2014. Stimulated Reservoir Volume: A Misapplied Concept?. SPE Paper 168596 Presented at the SPE Hydraulic Fracturing Technology Conference, February 4–6, 2014, The Woodlands, Texas. doi:10.2118/168596-MS

    Google Scholar 

  • Dunkel, M. R., 2017. Sustainability Aspects of Water Infrastructure. Society of Petroleum Engineers. SPE Health, Safety, Security, Environment & Social Responsibility Conference––North America, April 18–20, 2017, New Orleans, Louisiana. doi:10.2118/184445-MS

    Google Scholar 

  • Ehlig-Economides, C. A., Economides, M. J., 2011. Water as Proppant. SPE Paper 147603 Presented at the SPE Annual Technical Conference and Exhibition, October 30–November 2, 2011, Denver, Colorado. doi:10.2118/147603-MS

    Book  Google Scholar 

  • Ehlig-Economides, C., Economides, M. J., 1985. Pressure Transient Analysis in an Elongated Linear Flow System. Society of Petroleum Engineers Journal, 25(6): 839–847. doi:10.2118/12520-pa

    Article  Google Scholar 

  • EPA, 2011. Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources. [2017-09-04]. https://yosemite.epa.gov/sab/sabproduct.nsf/0/D3483AB445AE61418525775900603E79/$File/Draft+Plan+to+Study+the+Potential+Impacts+of+Hydraulic+Fracturing+on+Drinking+Water+Resources-February+2011.pdf

    Google Scholar 

  • Eshkalak, M. O., Al-Shalabi, E. W., Sanaei, A., et al., 2014. Simulation Study on the CO2-Driven Enhanced Gas Recovery with Sequestration versus the Re-Fracturing Treatment of Horizontal Wells in the U.S. Unconventional Shale Reservoirs. Journal of Natural Gas Science and Engineering, 21: 1015–1024. doi:10.1016/j.jngse.2014.10.013

    Article  Google Scholar 

  • Esmaili, S., Kalantari, D. A., Mohaghegh, S. D., 2012. Forecasting, Sensitivity and Economic Analysis of Hydrocarbon Production from Shale Plays Using Artificial Intelligence & Data Mining. SPE Paper 162700 Presented at the SPE Canadian Unconventional Resources Conference, October 30–November 1, 2012, Calgary, Alberta. doi:10.2118/162700-MS

    Book  Google Scholar 

  • Fragachán, F. E., Shahri, M. P., Arnold, D. M., et al., 2016. Enhancing Well Performance via In-Stage Diversion in Unconventional Wells: Physics and Case Studies. SPE Paper 180985 Presented at the SPE Argentina Exploration and Production of Unconventional Resources Symposium, June 1–3, 2016, Buenos Aires. doi:10.2118/180985-MS

    Google Scholar 

  • Friehauf, K. E., Sharma, M. M., 2010. Fluid Selection for Energized Hydraulic Fractures. Journal of Petroleum Technology, 62(03): 42–44

    Article  Google Scholar 

  • Ghahri, P., Jamiolahmady, M., Sohrabi, M., 2011. A Thorough Investigation of Cleanup Efficiency of Hydraulic Fractured Wells Using Response Surface Method. SPE Paper 144114 Presented at the SPE European Formation Damage Conference, June 7–10, 2011, Noordwijk. doi:10.2118/144114-MS

    Book  Google Scholar 

  • Ghanbari, E., Dehghanpour, H., 2016. The Fate of Fracturing Water: A Field and Simulation Study. Fuel, 163: 282–294. doi:10.1016/j.fuel.2015.09.040

    Article  Google Scholar 

  • Gupta, D. V. S., Leshchyshyn, T. T., 2005. CO2-Energized Hydrocarbon Fracturing Fluid: History and Field Application in Tight Gas Wells. SPE Paper 95061 Presented at the SPE Latin American and Caribbean Petroleum Engineering Conference, June 20–23, 2005, Rio de Janeiro. doi:10.2118/95061-MS

    Google Scholar 

  • Haddad, M., Sanaei, A., Al-Shalabi, E. W., et al., 2015. Major Obstacles in Production from Hydraulically Re-Fractured Shale Formations: Reservoir Pressure Depletion and Pore Blockage by the Fracturing Fluid. SPE Paper 178587 Presented at the Unconventional Resources Technology Conference, July 20–22, 2015, San Antonio, Texas. doi:10.2118/178587-MS

    Google Scholar 

  • Hargreaves, S., 2012. Drought Strains U.S. Oil Production. [2017-09-04]. http://money.cnn.com/2012/07/31/news/economy/drought-oil-us/

    Google Scholar 

  • Harris, P. C., Haynes, R. J., Egger, J. P., 1984. The Use of CO2-Based Fracturing Fluids in the Red Fork Formation in the Anadarko Basin, Oklahoma. Journal of Petroleum Technology, 36(6): 1003–1008. doi:10.2118/11575-pa

    Article  Google Scholar 

  • Holditch, S. A., 1979. Factors Affecting Water Blocking and Gas Flow from Hydraulically Fractured Gas Wells. Journal of Petroleum Technology, 31(12): 1515–1524. doi:10.2118/7561-pa

    Article  Google Scholar 

  • Ibrahim, A. F., Nasr-El-Din, H. A., Rabie, A., et al., 2016. A New Friction-Reducing Agent for Slickwater Fracturing Treatments. SPE Paper 180245 Presented at the SPE Low Perm Symposium, May 5–6, 2016, Denver, Colorado. doi:10.2118/180245-MS

    Book  Google Scholar 

  • Ishida, T., Aoyagi, K., Niwa, T., et al., 2012. Acoustic Emission Monitoring of Hydraulic Fracturing Laboratory Experiment with Supercritical and Liquid CO2. Geophysical Research Letters, 39(16): L16309. doi:10.1029/2012gl052788

    Article  Google Scholar 

  • Jacobs, T., 2014. Energized Fractures: Shale Revolution Revisits the Energized Fracture. Journal of Petroleum Technology, 66(6): 48–56. doi:10.2118/0614-0048-jpt

    Article  Google Scholar 

  • Jacobs, T., 2016. Downturn Represents Stress Test for Unconventional Hydraulic Fracture Modeling. Journal of Petroleum Technology. [2017-09-04]. http://www.spe.org/jpt/article/10666-downturnrepresents-stress-test-for-unconventional-hydraulic-fracture-modeling/

    Google Scholar 

  • James, S., 2008. Propriety Flow Back, Well Test and RTA Data for Case 2. Caltex Energy Inc., Calgary

    Google Scholar 

  • Kammath, J., Laroche, C., 2003. Laboratory-Based Evaluation of Gas Well Deliverability Loss Caused by Water Blocking. SPE Journal, 8(1): 71–80. doi:10.2118/83659-pa

    Article  Google Scholar 

  • Kazemi, M., Takbiri-Borujeni, A., 2016. Effect of Adsorption in Flow of Gases in Organic Nanopores: A Molecular Dynamics Study. URTeC/SPE Paper Presented at the Unconventional Resources Technology Conference, August 1–3, 2016, San Antonio, Texas. doi:10.15530/URTEC-2016-2459243

    Google Scholar 

  • Kennedy, R., Luo, L., Kuskra, V., 2016a. Unconventional Basins and Plays—North America and Rest of the World. In: Ahmed, U., Meehan, M., eds., Unconventional Oil and Gas Resources: Exploitation and Development. Taylor Francis Group, CRC Press, Baker Hughes. 752

    Google Scholar 

  • Kennedy, R., Oraki Kohshour, I., Ahmed, U., 2016b. Rejuvenation of Unconventional Resources. In: Ahmed, U., Meehan, M., eds., Unconventional Oil and Gas Resources: Exploitation and Development. Taylor Francis Group, CRC Press, Baker Hughes. 752

    Google Scholar 

  • Kong, B., Wang, S. H., Chen, S. N., 2016. Minimize Formation Damage in Water-Sensitive Montney Formation with Energized Fracturing Fluid. SPE Reservoir Evaluation & Engineering, 20(3): 562–571. doi:10.2118/179019-pa

    Article  Google Scholar 

  • Kostenuk, N. H., Browne, D. J., 2010. Improved Proppant Transport System for Slickwater Shale Fracturing. SPE Paper 137818 Presented at the Canadian Unconventional Resources and International Petroleum Conference, October 19–21, 2010, Calgary, Alberta. doi:10.2118/137818-MS

    Book  Google Scholar 

  • Leblanc, D. P., Martel, T., Graves, D. G., et al., 2011. Application of Propane (LPG) Based Hydraulic Fracturing in the McCully Gas Field, New Brunswick, Canada. SPE Paper 144093 Presented at the North American Unconventional Gas Conference and Exhibition, June 14–16, 2011, The Woodlands, Texas. doi:10.2118/144093-MS

    Book  Google Scholar 

  • Li, L. M., Al-Muntasheri, G. A., Liang, F., 2016. A Review of Crosslinked Fracturing Fluids Prepared with Produced Water. Petroleum, 2(4): 313–323. doi:10.1016/j.petlm.2016.10.001

    Article  Google Scholar 

  • Li, X., Feng, Z. J., Han, G., et al., 2015. Breakdown Pressure and Fracture Surface Morphology of Hydraulic Fracturing in Shale with H2O, CO2 and N2. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2(2): 63–76. doi:10.1007/s40948-016-0022-6

    Article  Google Scholar 

  • Liang, F., Sayed, M., Al-Muntasheri, G. A., et al., 2016. A Comprehensive Review on Proppant Technologies. Petroleum, 2(1): 26–39. doi:10.1016/j.petlm.2015.11.001

    Article  Google Scholar 

  • Linde, 2014. Oil and Gas Reservoirs: Energized Solutions. [2017-09-04]. https://www.uwyo.edu/eori/_files/co2conference14/watts.pdf

    Google Scholar 

  • Loree, D. N., Mesher, S. T., 2007. Liquified Petroleum Gas Fracturing System. [2017-09-04]. http://www.google.com/patents/US20070204991

    Google Scholar 

  • Lu, J. M., Nicot, J. P., Mickler, P. J., et al., 2016. Alteration of Bakken Reservoir Rock during CO2-Based Fracturing—An Autoclave Reaction Experiment. Journal of Unconventional Oil and Gas Resources, 14: 72–85. doi:10.1016/j.juogr.2016.03.002

    Article  Google Scholar 

  • Makhanov, K., Dehghanpour, H., Kuru, E., 2012. An Experimental Study of Spontaneous Imbibition in Horn River Shales. SPE Paper 162650 Presented at the SPE Canadian Unconventional Resources Conference, October 30–November 1, 2012, Calgary, Alberta. doi:10.2118/162650-MS

    Book  Google Scholar 

  • Martin, T., Kotov, S., Nelson, S.G., et al., 2016. Stimulation of Unconventional Reservoirs. In: Ahmed, U., Meehan, M., eds., Unconventional Oil and Gas Resources: Exploitation and Development. Taylor Francis Group, CRC Press, Baker Hughes

    Google Scholar 

  • Mauter, M. S., Alvarez, P. J. J., Burton, A., et al., 2014. Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays. Environmental Science & Technology, 48(15): 8298–8306. doi:10.1021/es405432k

    Article  Google Scholar 

  • Meehan, D. N., 2014. A Comparison of North American and International Risks in Unconventional Resource Plays. International Petroleum Technology Conference, December 10, 2014, Kuala Lumpur. doi:10.2523/IPTC-17739-MS

    Book  Google Scholar 

  • Middleton, R. S., Carey, J. W., Currier, R. P., et al., 2015. Shale Gas and Non-Aqueous Fracturing Fluids: Opportunities and Challenges for Supercritical CO2. Applied Energy, 147: 500–509. doi:10.13039/100008902

    Article  Google Scholar 

  • Miller, C. K., Water, G. A., Rylander, E. I., 2011. Evaluation of Production Log Data from Horizontal Wells Drilled in Organic Shales. North American Unconventional Gas Conference and Exhibitions, Texas. SPE 144236

    Book  Google Scholar 

  • Mirzaei-Paiaman, A., Dalvand, K., Oraki Kohshour, I., et al., 2012. A Study on the Key Influential Factors of a Gas Reservoir’s Potential for Aqueous Phase Trapping. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(16): 1541–1549. doi:10.1080/15567036.2010.489102

    Article  Google Scholar 

  • Navigant Research, 2016. [2017-9-04]. http://www.navigantresearch.com/

  • Nuyens, D., Heinz, W., Hiller, D. H., 2012. License to Operate: Nontechnical Risks and Shale Gas Development in Europe. SPE Paper 156812 Presented at the SPE Canadian Unconventional Resources Conference, October 30–November 1, 2012, Calgary, Alberta. doi:10.2118/156812-MS

    Google Scholar 

  • Olivas, J. A., Nebiolo, M. M., Garcia, S. J. R., et al., 2013. Accelerating the Learning Curve: Adapting Global Expertise to Coiled-Tubing Operations in Argentina Shale Development. SPE Paper 163929 Presented at the SPE Hydraulic Fracturing Technology Conference, February 4–6, 2013, The Woodlands, Texas. doi:10.2118/163929-MS

    Google Scholar 

  • Oraki Kohshour, I., Leshchyshyn, T., Munro, J., et al., 2016. Examination of Water Management Challenges and Solutions in Shale Resource Development––Could Waterless Fracturing Technologies Work?. URTeC/SPE Paper Presented at the Unconventional Resources Technology Conference, August 1–3, 2016, San Antonio, Texas. doi:10.15530/URTEC-2016-2461040.

    Book  Google Scholar 

  • Pathak, M., Panja, P., Huang, H., et al., 2016. Enhanced Recovery in Shales: Molecular Investigation of CO2 Energized Fluid for Re-Fracturing Shale Formations. URTeC/SPE Paper Presented at the Unconventional Resources Technology Conference, August 1–3, 2016, San Antonio, Texas.. doi:10.15530/URTEC-2016-246198

    Google Scholar 

  • Penny, G. S., Dobkins, T. A., Pursley, J. T., 2006. Field Study of Completion Fluids to Enhance Gas Production in the Barnett Shale. SPE Paper 100434 Presented at the SPE Gas Technology Symposium, May 15–17, 2016, Calgary, Alberta. doi:10.2118/100434-MS

    Book  Google Scholar 

  • Rassenfoss, S., 2013. Seeking Lower-Cost Ways to Deal with Fracturing Water. Journal of Petroleum Technology, 65(11): 48–57. doi:10.2118/1113-0048-jpt

    Article  Google Scholar 

  • Reynolds, M., Bachman, R., Buendia, J., 2015. The Full Montney—A Critical Review of Well Performance by Production Analysis of Over 2 000 Montney Multi-Stage Fractured Horizontal Gas Wells. SPE Paper 175948 Presented at the SPE/CSUR Unconventional Resources Conference, October 20–22, 2015, Calgary, Alberta. doi:10.2118/175948-MS

    Google Scholar 

  • Reynolds, M., Moscoso, K., Buendia, J., et al., 2014. Tight Cardium Multistage-Fractured Horizontal-Oil-Well-Performance Study Focusing on the Effectiveness of Various Fracture-Fluid Systems. Journal of Canadian Petroleum Technology, 54(5): 298–309. doi:10.2118/171583-pa

    Article  Google Scholar 

  • Ribeiro, L. H., Sharma, M. M., 2013a. A New 3D Compositional Model for Hydraulic Fracturing with Energized Fluids. SPE Production & Operations, 28(3): 259–267. doi:10.2118/159812-pa

    Article  Google Scholar 

  • Ribeiro, L. H., Sharma, M. M., 2013b. Fluid Selection for Energized Fracture Treatments. SPE Paper 163867 Presented at the SPE Hydraulic Fracturing Technology Conference, February 4–6, 2013, The Woodlands, Texas. doi:10.2118/163867-MS

    Book  Google Scholar 

  • Rigzone, 2013. Fracking Goes Waterless: Gas Fracking Could Silence Critics. [2017-09-04]. http://www.rigzone.com/news/oil_gas/a/129261/fracking_goes_waterless_ gas_ fracking_could_silence_critics

    Google Scholar 

  • Shanley, K. W., Robert, M. C., John, W. R., 2004. Factors Controlling Prolific Gas Production from Low-Permeability Sandstone Reservoirs: Implications for Resource Assessment, Prospect Development, and Risk Analysis. AAPG Bulletin, 88(8): 1083–1122

    Article  Google Scholar 

  • Sharma, M., Agrawal, S., 2013. Impact of Liquid Loading in Hydraulic Fractures on Well Productivity. SPE Paper 163837 Presented at the SPE Hydraulic Fracturing Technology Conference, February 4–6, 2013, The Woodlands, Texas. doi:10.2118/163837-MS

    Book  Google Scholar 

  • Smith, C. F., 1973. Gas Well Fracturing Using Gelled Non-Aqueous Fluids. SPE Paper 4678 Presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, September 30–October 3, 1973, Las Vegas. doi:10.2118/4678-MS

    Book  Google Scholar 

  • Swami, V. F., Javadpour, F., Settari, A., 2013. A Numerical Model for Multi-Mechanism Flow in Shale Gas Reservoirs with Application to Laboratory Scale Testing. SPE Paper 164840 Presented at the EAGE Annual Conference & Exhibition incorporating SPE Europec, June 10–13, 2013, London. doi:10.2118/164840-MS

    Book  Google Scholar 

  • Taylor, R. S., Lestz, R. S., Wilson, L., et al., 2006. Liquid Petroleum Gas Fracturing Fluids for Unconventional Gas Reservoirs. Canadian International Petroleum Conference, June 13–15, 2006, Calgary, doi:10.2118/2006-169

    Book  Google Scholar 

  • Tiner, R. L., Stahl, E. J., Malone, W. T., 1974. Developments in Fluids to Reduce Potential Damage from Fracturing Treatments. Developments in Fluids to Reduce Potential Damage from Fracturing Treatments. SPE Paper 4790 Presented at the Annual Technical Meeting, May 7–10, 1974, Calgary. doi:10.2118/4790-MS

    Google Scholar 

  • Tovar, F. D., Eide, O., Graue, A., et al., 2014. Experimental Investigation of Enhanced Recovery in Unconventional Liquid Reservoirs using CO2: A Look Ahead to the Future of Unconventional EOR. SPE Paper 169022 Presented at the SPE Unconventional Resources Conference, April 1–3, 2014, The Woodlands, Texas. doi:10.2118/169022-MS

    Google Scholar 

  • Tudor, E. H., Nevison, G. W., Allen, S., et al., 2009. 100% Gelled LPG Fracturing Process: An Alternative to Conventional Water-Based Fracturing Techniques. SPE Paper 124495 Presented at the SPE Eastern Regional Meeting, September 23–25, 2009, Charleston, West Virginia. doi:10.2118/124495-MS

    Google Scholar 

  • US Drought Monitoring Map, 2016. [2017-09-04]. http://droughtmonitor.unl.edu/

  • Vincent, M., 2010. Restimulation of Unconventional Reservoirs: When are Refracs Beneficial?. Journal of Canadian Petroleum Technology, 50(5): 36–52. doi:10.2118/136757-pa

    Article  Google Scholar 

  • Wamock, W. E., Harris, P. C., King, D. S., 1985. Successful Field Applications of CO2-Foam Fracturing Fluids in the Arkansas-Louisiana-Texas Region. Journal of Petroleum Technology, 37(1): 80–88. doi:10.2118/11932-pa

    Article  Google Scholar 

  • Wang, Q., Guo, B., Gao, D., 2012. Is Formation Damage an Issue in Shale Gas Development?. SPE Paper 149623 Presented at the SPE International Symposium and Exhibition on Formation Damage Control, February 15–17, 2012, Lafayette, Louisiana. doi:10.2118/149623-MS

    Book  Google Scholar 

  • Whalen, T., 2012. The Challenges of Reusing Produced Water. Journal of Petroleum Technology, 64(11): 18–20. doi:10.2118/1112-0018-jpt

    Article  Google Scholar 

  • Zanganeh, B., Ahmadi, M., Obadareh, A. 2014. Proper Inclusion of Hydraulic Fracture and Unpropped Zone Conductivity and Fracturing Fluid Flowback in Single Shale Oil Well Simulation. SPE Paper 169511 Presented at the SPE Western North American and Rocky Mountain Joint Regional Meeting. April 17−18, 2014, Denver, Colorado. doi:10.2118/169511-MS

    Book  Google Scholar 

  • Zhang, K., Liu, Q., Wang, M., et al., 2016. Investigation of CO2 Enhanced Gas Recovery in Shale Plays. SPE Paper 180174 Presented at the SPE Europec Featured at 78th EAGE Conference and Exhibition, May 30–June 2, 2016, Vienna. doi:10.2118/180174-MS

    Google Scholar 

Download references

Acknowledgment

The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0781-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Oraki Kohshou.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12583-017-0783-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oraki Kohshou, I., Barati, R., Yorro, M.C. et al. Economic assessment and review of waterless fracturing technologies in shale resource development: A case study. J. Earth Sci. 28, 933–948 (2017). https://doi.org/10.1007/s12583-017-0781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0781-1

Key Words

Navigation