Skip to main content
Log in

An Improvement of Third Order WENO Scheme for Convergence Rate at Critical Points with New Non-linear Weights

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we construct and implement a new improvement of third order weighted essentially non-oscillatory (WENO) scheme in the finite difference framework for hyperbolic conservation laws. In our approach, a modification in the global smoothness measurement is reported by applying all three points on global stencil \((i-1,i,i+1)\) which is used for convergence of non-linear weights towards the optimal weights at critical points and achieves the desired order of accuracy for third order WENO scheme. We use the third order accurate total variation diminishing (TVD) Runge-Kutta time stepping method. The major advantage of the proposed scheme is its better numerical accuracy in smooth regions. The computational performance of the proposed WENO scheme with this global smoothness measurement is verified in several benchmark one- and two-dimensional test cases for scalar and vector hyperbolic equations. Extensive computational results confirm that the new proposed scheme achieves better performance as compared with WENO-JS3, WENO-Z3 and WENO-F3 schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21(1), 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R.: Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 2(3–5), 347–377 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. i. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    Article  MATH  Google Scholar 

  9. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable weno scheme. J. Comput. Phys. 228(8), 3025–3047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory weno-z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Don, W.-S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiaoshuai, W., Yuxin, Z.: A high-resolution hybrid scheme for hyperbolic conservation laws. Int. J. Numer. Methods Fluids 78(3), 162–187 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wu, X., Liang, J., Zhao, Y.: A new smoothness indicator for third-order weno scheme. Int. J. Numer. Methods Fluids 81(7), 451–459 (2016)

    Article  MathSciNet  Google Scholar 

  15. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of weno schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu, J., Qiu, J.: A new fifth order finite difference weno scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, R., Chandrashekar, P.: Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Comput. Fluids. (2019). https://doi.org/10.1016/j.compfluid.2019.06.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232(1), 68–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Acker, F., Borges, R.R., Costa, B.: An improved WENO-z scheme. J. Comput. Phys. 313, 726–753 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, W., Wu, W.: Improvement of third-order WENO-Z scheme at critical points. Comput. Math. Appl. 75(9), 3431–3452 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, W., Wu, W.: An improved third-order weighted essentially non-oscillatory scheme achieving optimal order near critical points. Comput. Fluids 162, 113–125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gande, N.R., Rathod, Y., Rathan, S.: Third-order weno scheme with a new smoothness indicator. Int. J. Numer. Methods Fluids 85(2), 90–112 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lax, P.D., Liu, X.-D.: Solution of two-dimensional riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Center for Fundamental Research in Space Dynamics and Celestial Mechanics (CFRSC), New Delhi, Delhi, India for providing research facilities. We also express gratitude to CSIR, Govt. of India for the grant reference no. 09/045(1438)/2016-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavneet Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kaur, B. An Improvement of Third Order WENO Scheme for Convergence Rate at Critical Points with New Non-linear Weights. Differ Equ Dyn Syst 28, 539–557 (2020). https://doi.org/10.1007/s12591-019-00508-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-019-00508-5

Keywords

Navigation