Skip to main content
Log in

Exploratory Study of Archaebacteria and their Habitat in Underground, Opencast Coal Mines and Coal Mine Fire Areas of Dhanbad

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Coal contains abundant microbial genera which include archaebacteria. The study of archaea kingdom in coal mines is a significant tool for knowing the relationship between coal and archaebacteria, the major role in geochemical cycle and application for further coal bio–beneficiation. The present study related to exploration of archaebacteria and their habitat in coal mining area of Dhanbad with reference to their ecology and nutrient availability that have evolve to grow under extreme conditions. Total six different sites such as two underground coal mines (Sudamdih shaft and Chasnalla underground mine), two opencast coal mines (Chandan project and Bhowra abandoned mine), Jharia mine fire and Sudamdih coal washery of Dhanbad was selected. Seven gram negative obligate anaerobic bacteria were isolated from the selected sites. The isolated species were rod and cocci shaped and the colony was round, smooth, off white in colour and with entire margin and little are cluster of cocci in shape. The isolated species were identified as Methanococcus spp, Methanobacterium spp and Methanosarcina spp. Apart from that two thermoacidophilic sulfur oxidizing bacteria Sulfolobus spp was also isolated from Jharia Coal Mine Fire. The physicochemical and biological characterization of the habitat was also studied for the entire selected area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM D 4638 – 11. Standard guide for preparation of biological samples for inorganic chemical analysis. Volume: 11.01.

  • Atlas, R.M. and Bartha, R. (2009) Microbial ecology, fundamental and applications, fourth edition, Pearson education.

    Google Scholar 

  • Balows, A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H. (1992) The prokaryotes (2nd edd.), A hand book on biology of bacteria: Ecophysiology, isolation, applications, Springer-Verlag.

    Google Scholar 

  • Bhardwaj, K.K.R. and Gaur, A.C. (1970) The effect of HA and fulvic acid on the growth and efficiency of nitrogen fixation of Azotobacter chroococum. Folia, v.15(5), pp.364–367.

    Google Scholar 

  • Brock, T. D., Brock, K. M., Belly, R. T. and Weiss, R. L. (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol., v.84, pp. 54–68.

    Article  Google Scholar 

  • Burcu, U., Verlin, R.P., Mili, S., Vicente, G.A., Kuk, J.C. and Klaus, N. (2012) Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front. Microbiol., v.3, pp.175 1–14.

    Google Scholar 

  • Casidajr, L.E., Klein, D.A. and Santoro, T. (1964) Soil dehydrogenase activity. Soil Sci., v.98, pp.371–376.

    Article  Google Scholar 

  • Central Mine Planning and Design Institute (CMPDI) Ltd (2006) Ranchi, Jharkhand, India.

  • Dariusz, S., Flynn, W. P., Courtney, T., Irene, S., Jennifer, L. M., Julius, S. L., Yu-Shih, L., Tobias, F. E., Florence, S., Kai, U. H., Maria M. And Arndt, S. (2008) Methane producing microbial community in a coal bed of the Illinois basin. Appl. Environ. Microbiol., pp. 2424–2432.

    Google Scholar 

  • Delong, E.F. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA, v.89, pp.5685–5689.

    Article  Google Scholar 

  • Delong, E.F. (2005) Microbial community genomics in the ocean. Nat. Rev. Microbiol., v.3, pp.459–469.

    Article  Google Scholar 

  • Dubey, R.C. and Maheswari, D.K. (2008) Practical Microbiology., 2nd edd. S. Chand publication.

    Google Scholar 

  • Edwards, T. and Mcbride, B.C. (1975) New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol., v.29, pp.540–545.

    Google Scholar 

  • Fuhrman, J.A., Mccallum, K. and Davis. A.A. (1992) Novel major archaebacterial group from marine plankton. Nature, v.356, pp.148–49.

    Article  Google Scholar 

  • Gaines, I., Salihoglu, and Yilmaz, A. (1983) Comparison of five humic acids. Fuel, v.62, pp.373–379.

    Article  Google Scholar 

  • Galand, P.E., Fritze, H., Conrad, R. and Yrjala. K. (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl. Environ. Microbiol., v.71, pp.2195–2198.

    Article  Google Scholar 

  • Garcia, J.L. (1990) Taxonomy and ecology of methanogens. FEMS Microbiol. Rev., v.87, pp.297–308.

    Article  Google Scholar 

  • Glass, J.B. and Orphan, V.J. (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front. Microbiol., v.3(61), pp.1–20.

    Google Scholar 

  • Goodwin, J., Wase, D. and Forster. C. (1990) Effects of nutrient limitation on the anaerobic up flow sludge blanket reactor. Enzyme Microb. Technol., v.12, pp.877–884.

    Article  Google Scholar 

  • Green, M.S., Flanegan, K.C. and Gilcrease. P.C. (2008) Characterization of a methanogenic consortium enriched from a coal bed methane well in the Powder river basin, U.S.A. Int. Journal Coal Geol., v.76, pp.34–45.

    Article  Google Scholar 

  • Islam, K.R. and Weil, R.R. (2000) Land use effects on soil quality in a tropic forest ecosystem of Bangladesh. Agri. Ecosyst. Environ., v.79, pp.9–16.

    Article  Google Scholar 

  • Keough, B.P., Schmidt, T.M. and Hicks. R.E. (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb. Ecol., v.46, pp.238–248.

    Article  Google Scholar 

  • Kim, B.S., Oh, H.M., Kang, H. and Chun. J. (2005) Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. Jour. Microbiol., v.43, pp.144–151.

    Google Scholar 

  • Kleikemper, J., Pombo, S. A., Schroth, M.H., Sigler, W.V., Pesaro, M. and Zeyer. J. (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., v.71, pp.149–158.

    Article  Google Scholar 

  • Klein, D., Flores, R.M., Venot, C., Gabbert, K., Schmidt, R., et al. (2008) Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration. Internat. Jour. Coal Geol., v.76, pp.3–13.

    Google Scholar 

  • Knittel, K., Losekann, T., Boetius, A., Kort, R. and Amann. R. (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., v.71, pp.467–479.

    Article  Google Scholar 

  • Krumholz, L.R., Mckinley, J.P. Ulrich, G.A. and Sufita. J. M. (1997) Confined subsurface microbial communities in Cretaceous rock. Nature, v.386, pp.64–66.

    Article  Google Scholar 

  • Lepp, P.W., Brinig, M.M., Ouverney, C.C., Palm, K., Armitage, G.C. and Relman. D.A. (2004) Methanogenic archaea and human periodontal disease. Proc. Natl. Acad. Sci. USA, v.101, pp.6176–6181.

    Article  Google Scholar 

  • Menyailo, O.V., Lehmann, J., Cravo, M., Silva, D. and Zech, W. (2003) Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon, Brazil. Biol. Fertility Soils, v.38, pp.1–9.

    Article  Google Scholar 

  • Mesa Verde Resources humic acid methodology, Procedure for determination of humic acid content, Placitas, NM-87043. www.humates.com/methodology.htm/

  • Miles, A. A., Misra, S.S. and Irwin, J.O. (1938) The estimation of the bactericidal power of the blood. J Hygiene, v.38(6), pp.732–749.

    Article  Google Scholar 

  • Mills, H.J., Martinez, R.J., Story, S. and Sobecky. P.A. (2005) Characterization of microbial community structure in Gulf of Mexico fas hydrates: comparative analysis of DNA-and RNA-derived clone libraries. Appl. Environ. Microbiol., v.71, pp.3235–3247.

    Article  Google Scholar 

  • Mink, R.W. and Dugan, P.R. (1977) Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol., v.33, pp.713–717.

    Google Scholar 

  • Nelson, D.W. and Sommers, L.E. (1996) Total carbon, organic carbon, and organic matter. In: Sparks, D.L., et, al. (Eds.), Methods of Soil Analysis, Part 3, Chemical Methods. 3rd ed. SSSA, Madison, WI, SSSA Book Services.

    Google Scholar 

  • Nisar, A. and Mir, S. (1989) Lignitic coal utilization in the form of HA as fertilizer and soil conditioner. Sci. Technol. Develop., v.8 (1), pp.23–26.

    Google Scholar 

  • Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch, O.L. and Schleper. C. (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol., v.5, pp.787–797.

    Article  Google Scholar 

  • Ohtonen, R. (1990) Biological activity and microorganisms in forest soil as indicators of environmental changes. Ph.D Dissertation. Acta University, Oula.

    Google Scholar 

  • Penner, T. J., Foght, J. M. and Budwill. K. (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Internat. Jour. Coal Geol., v.82, pp.81–93.

    Article  Google Scholar 

  • Pierre, O., Anja, S. and Christa, S. 2013 Archaea in Biogeochemical Cycles. Annu. Rev. Microbiol., v.67, pp.437–457.

    Article  Google Scholar 

  • Prescott, L.M., Harley, J.P. and Klein, J.P. (2002) Microbiology (5th edd.), McGraw Hill publication, New York.

    Google Scholar 

  • Prusty, B.K., Harpalani, S. and Singh, A.K. (2009) Quantification of ventilation air methane and its utilization potential at moonidih underground coal mine, india. United States Environmental Protection Agency (USEPA), Washington, D.C.

    Google Scholar 

  • Sabrina, B., Tillmann, L., Martin, K., Frederick, V.N., Bert, E. and Heribert, C. (2011) Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Appl. Environ. Microbiol., pp.3749–3756.

    Google Scholar 

  • Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako, M. and Ishijima. Y. (2007) Molecular characterization of microbial communities in deep coal seam ground water of northern Japan. Geobiol., v.5, pp.423–433.

    Article  Google Scholar 

  • Sim, S.F., Lau, S., Wong, N.C., Janice, A., Muhammad, F., Md, N., Amira, S. and Mohd, P. (2006) Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner. J Braz. Chem. Soc., v.17 (3), pp.582–587.

    Article  Google Scholar 

  • Simon, H.M., Dodsworth, J.A. and Goodman. R.M. (2000) Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol., v.2, pp.495–505.

    Article  Google Scholar 

  • Strapoc, D., Picardal, F.W., Turich, C., Schaperdoth, I., Macalady, J.L., Lipp, J.S., Lin, Y.S., Ertefai, T.F., Schubotz, F., Hinrichs, K.U., Mastalerz, M. and Schimmelmann. A. (2008) Methane producing microbial community in a coal bed of the Illinois Basin. Appl. Environ. Microbiol., v.74, pp.3918.

    Article  Google Scholar 

  • Strapoc D., Mastalerz, M., Dawson, K., Macalady, J.L., Callaghan, A., Wawrik, B., and Ashby, M. (2011) Biogeochemistry of Coal-Bed Methane. Ann. Rev. Earth Planetary Sci., v.39(1), pp.617–656.

    Article  Google Scholar 

  • Subbiah, B.V. and Asija, G.L. (1956) A rapid procedure for the determination of available nitrogen in soils. Curr. Sci., v.25, pp.259–260.

    Google Scholar 

  • Takashima, M., Speece, R.E. and Parkin, G.F. (1990) Mineral requirements for methane fermentation. Crit. Rev. Environ. Control., v.19, pp.465–479.

    Article  Google Scholar 

  • Tanner, R.S. (2002) Cultivation of bacteria and fungi, In: Hurst, C.J., R.L. Crawford, G.B. Knudsen, M.J. Mclnerney, and L.D. Syetzenbach. (Eds). Manual of Environmental Microbiology, Second edition, ASM (American Society of Microbiology) Press, Washington DC.

    Google Scholar 

  • Ulrich, G. and Bower. S. (2008) Active methanogenesis and acetate utilization in Powder river basin coals, United States. Internat. Jour. Coal Geol., v.76, pp.25–33.

    Article  Google Scholar 

  • United State Department of Agriculture (USDA) (2014) Natural resources conservation service. Soil health-Guide for educator.

  • Woese, C.R., Kandler, O. and Wheelis. M.L. (1977) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, v.87, pp. 4576–4579.

    Article  Google Scholar 

  • Yingei, W. and Resin, H.A. (1988) Treatment of Copper and Nickle. Haunjing Bashu., v.7, pp.21–22.

    Google Scholar 

  • Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., et al. (2002) Cultivating the uncultured. Proc. Natl. Acad. Sci. USA, v.99, pp.15681–15686.

    Article  Google Scholar 

  • Zhang, Y. and Gladyshev, V.D. (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem. Rev., v.4828, pp.4828–4861.

    Article  Google Scholar 

  • Zhang, Y. and Gladyshev, V.D. (2010) General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. Jour. Biol. Chem., v.285, pp.3393–3405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Selvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Selvi, V.A., Ganguly, J. et al. Exploratory Study of Archaebacteria and their Habitat in Underground, Opencast Coal Mines and Coal Mine Fire Areas of Dhanbad. J Geol Soc India 91, 575–582 (2018). https://doi.org/10.1007/s12594-018-0907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0907-9

Navigation