Skip to main content

Advertisement

Log in

Electrophoretic deposition of chitosan–bioglass®–hydroxyapatite–halloysite nanotube composite coating

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The composite coatings of chitosan (CS)–bioglass® (BG)–hydroxyapatite (HA)–halloysite nanotube (HNT) were investigated and produced via electrophoretic deposition (EPD) technique. The utilization of CS as a dispersing, blending and charging agent for ceramic particles, including BG, HA and HNT, allowed the formation of CS–BG/HA/HNT composite, functionally graded composite (FGC) and bilayer film containing different layers. The results of scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) illustrate the composite in the form of the optimum distribution of ceramic components in the CS matrix with thickness of 28 µm on titanium (Ti) substrate. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests indicate that the corrosion resistance of the coated sample increases in corrected simulated body fluid (C-SBF) at 37 °C. Finally, the apatite-inducing ability of CS–BG–HA–HNT is proved by the formation of carbonated hydroxyapatite particles on composite coating in C-SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7(11):3813.

    Article  CAS  Google Scholar 

  2. Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg. 2010;39(7):690.

    Article  CAS  Google Scholar 

  3. Caridade SG, Merino EG, Alves NM, Mano JF. Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions. Mater Sci Eng C. 2013;33(7):4480.

    Article  CAS  Google Scholar 

  4. Abdal-hay A, Barakat N, Kyoo Lim J. Influence of electrospinning and dip-coating techniques on the degradation and cytocompatibility of Mg-based alloy. Colloids Surf A Physicochem Eng Asp. 2013;420:37.

    Article  CAS  Google Scholar 

  5. Pinheiro AC, Bourbon AI, Quintas MAC, Coimbra MA, Vicente AA. Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innov Food Sci Emerg Technol. 2012;16:227.

    Article  CAS  Google Scholar 

  6. Wang Y, Pang X, Zhitomirsky I. Electrophoretic deposition of chiral polymers and composites. Colloids Surf B Biointerfaces. 2011;87(2):505.

    Article  CAS  Google Scholar 

  7. Li Y, Wu K, Zhitomirsky I. Electrodeposition of composite zinc oxide–chitosan films. Colloids Surf A Physicochem Eng Asp. 2010;356(1):63.

    Article  CAS  Google Scholar 

  8. Laxmidhar B, Meilin L. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1.

    Article  Google Scholar 

  9. Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22.

    Article  CAS  Google Scholar 

  10. Liang D, Lu Zh, Yang H, Gao J, Chen R. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces. 2016;8(2):3958.

    Article  CAS  Google Scholar 

  11. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R. Enhanced antibacterial and wound healing activities of microporous chitosan–Ag/ZnO composite dressing. Carbohydr Polym. 2017;156:460.

    Article  CAS  Google Scholar 

  12. Su CH, Yang H, Song Sh, Lu B, Chen R. A magnetic superhydrophilic/oleophobic sponge for continuous oil–water separation. Chem Eng J. 2017;309:366.

    Article  CAS  Google Scholar 

  13. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1.

    Article  CAS  Google Scholar 

  14. Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006;17(11):967.

    Article  CAS  Google Scholar 

  15. Batmanghelich F, Ghorbani M. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceram Int. 2013;5(5):5393.

    Article  Google Scholar 

  16. Fu C, Song B, Wan CH, Savino K, Wang Y, Zhang X, Yates MZ. Electrochemical growth of composite hydroxyapatite coatings for controlled release. Surf Coat Technol. 2015;276:618.

    Article  CAS  Google Scholar 

  17. Fu C, Zhang X, Savino K, Gabrys P, Gao Y, Chaimayo W, Miller BL, Yates MZ. Antimicrobial silver–hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol. 2016;301:13.

    Article  CAS  Google Scholar 

  18. Krause D, Thomas B, Leinenbachb Ch, Eifler D, Minaya EJ, Boccaccini AR. The electrophoretic deposition of Bioglass\®particles on stainless steel and Nitinol substrates. Surf Coat Technol. 2006;200(16):4835.

    Article  CAS  Google Scholar 

  19. Mirsalehi SA, Sattari M, Khavandi A, Mirdamadi S, Naimi-Jamal MR. Tensile and biocompatibility properties of synthesized nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposite. J Compos Mater. 2015;13:1.

    Google Scholar 

  20. Molaei A, Amadeh A, Yari M, Afshar MR. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Mater Sci Eng C. 2016;59:740.

    Article  CAS  Google Scholar 

  21. Mirsalehi SA, Khavandi A, Mirdamadi S, Naimi-Jamal MR, Kalantari SM. Nanomechanical and tribological behavior of hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposites for biomedical applications. J Appl Polym Sci. 2015;132(23):42052.

    Article  Google Scholar 

  22. Molaei A, Yari M, Afshar MR. Modification of electrophoretic deposition of chitosan-bioactive glass-hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram Int. 2015;41(10):14537.

    Article  CAS  Google Scholar 

  23. Deen I, Zhitomirsky I. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloy Compd. 2014;586:531.

    Article  Google Scholar 

  24. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol. 2010;11(3):820.

    Article  CAS  Google Scholar 

  25. Zhang Y, Chen Y, Zhang H, Zhang B, Liu J. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem. 2013;118:59.

    Article  CAS  Google Scholar 

  26. Sun X, Zhang Y, Shen H, Jia N. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim Acta. 2010;56(2):700.

    Article  CAS  Google Scholar 

  27. Kamble R, Ghag M, Gaikawad S, Panda BK. Halloysite nanotubes and applications: a review. J Adv Sci Res. 2012;3(2):25.

    Google Scholar 

  28. Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 1986;7(2):97.

    Article  CAS  Google Scholar 

  29. Zhitomirsky I, Hashambhoy A. Chitosan-mediated electrosynthesis of organic–inorganic nanocomposites. J Mater Process Technol. 2007;191(1):68.

    Article  CAS  Google Scholar 

  30. Buhl S, Leinenbach C, Spolenak R, Wegener K. Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond-metal joints. J Mater Sci. 2010;45(16):4358.

    Article  CAS  Google Scholar 

  31. Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite–chitosan coatings. Mater Charact. 2007;58(4):339.

    Article  CAS  Google Scholar 

  32. Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I. Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol. 2009;209(4):1853.

    Article  CAS  Google Scholar 

  33. Deen I, Pang X, Zhitomirsky I. Electrophoretic deposition of composite chitosan–halloysite nanotube–hydroxyapatite films. Colloids Surf A. 2012;410:38.

    Article  CAS  Google Scholar 

  34. Naghib SM, Ansari M, Pedram A, Moztarzadeh F, Feizpour A, Mozafari M. Bioactivation of 304 stainless steel surface through 45S5 bioglass coating for biomedical applications. Int J Electrochem Sci. 2012;7:2890.

    CAS  Google Scholar 

  35. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907.

    Article  CAS  Google Scholar 

  36. Ehteshamzadeh M. Introduction to application of EIS in corrosion study, vol. 29. 1st ed. Kerman: Shahid Bahonar University Press; 2007, 19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MardAli Yousefpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaei, A., Yousefpour, M. Electrophoretic deposition of chitosan–bioglass®–hydroxyapatite–halloysite nanotube composite coating. Rare Met. 41, 3850–3857 (2022). https://doi.org/10.1007/s12598-018-1021-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1021-2

Keywords

Navigation