Skip to main content

Advertisement

Log in

A Review of the Role of Probiotic Supplementation in Dental Caries

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Dental diseases are among the common health issues experienced around the world. Dental caries is one of the most predominant oral diseases worldwide. Major factors associated with caries development include poor oral hygiene, the content of specific carbohydrates in the diet, dental biofilm formation, the cariogenic microbial load, reduction in salivary flow, insufficient fluoride exposure, gingival recession, genetic factors, and lack of personal attention to one’s dental health. Several preventive measures have been implemented to reduce the risk of the development of caries. Probiotics are live microbes that when administered in suitable amounts confer health benefits on the host; they are recognized as potential adjunct therapeutic agents for several diseases. The present manuscript summarizes recent findings on the role of probiotics in dental caries prevention and the possible mechanisms of probiotic effects. Review of the literature indicates the regular consumption of probiotic products significantly reduced the risk of caries by inhibiting cariogenic bacteria and enriching commensal microbes in the oral cavity. Buffering the salivary pH, production of bacteriocin and enzymes (dextranase, mutanase, and urease), the capacity of competing for the adhesion and colonization on tooth surfaces are the possible mechanisms behind the beneficial effect of probiotics. Further studies are necessary to address the efficacy of long-term probiotic supplementation on the control of dental diseases and the influence of childhood probiotic supplementation on the risk of caries development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192(19):5002–5017

    CAS  Google Scholar 

  2. Allaker RP, Ian Douglas CW (2015) Non-conventional therapeutics for oral infections. Virulence 6(3):196–207

    CAS  Google Scholar 

  3. Petersen PE (2004) Challenges to improvement of oral health in the 21st century - the approach of the WHO Global Oral Health Programme. Int Dent J 54(6 Suppl 1):329–343

    Google Scholar 

  4. Righolt AJ, Jevdjevic M, Marcenes W, Listl S (2018) Global-, regional-, and country-level economic impacts of dental diseases in 2015. J Dent Res 97(5):501–507

    CAS  Google Scholar 

  5. Atkins CY, Thomas TK, Lenaker D, Day GM, Hennessy TW, Meltzer MI (2016) Cost-effectiveness of preventing dental caries and full mouth dental reconstructions among Alaska Native children in the Yukon-Kuskokwim delta region of Alaska. J Public Health Dent 76(3):228–240

    Google Scholar 

  6. Hassell TM, Harris EL (1995) Genetic influences in caries and periodontal diseases. Crit Rev Oral Biol Med 6(4):319–342

    CAS  Google Scholar 

  7. Krol DM (2003) Dental caries, oral health, and pediatricians. Curr Probl Pediatr Adolesc Health Care 33(8):253–270

    Google Scholar 

  8. Featherstone JD, Adair SM, Anderson MH, Berkowitz RJ, Bird WF, Crall JJ, Den Besten PK, Donly KJ, Glassman P, Milgrom P, Roth JR, Snow R, Stewart RE (2003) Caries management by risk assessment: consensus statement, April 2002. J Calif Dent Assoc 31(3):257–269

    Google Scholar 

  9. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369(9555):51–59

    CAS  Google Scholar 

  10. Sivamaruthi BS (2018) A comprehensive review on clinical outcome of probiotic and synbiotic therapy for inflammatory bowel diseases. Asian Pac J Trop Biomed 8(3):179–186

    Google Scholar 

  11. Sivamaruthi BS, Kesika P, Prasanth MI, Chaiyasut C (2018) A mini review on antidiabetic properties of fermented foods. Nutrients 10(12):E1973. https://doi.org/10.3390/nu10121973

    Article  CAS  Google Scholar 

  12. Sivamaruthi BS, Kesika P, Chaiyasut C (2018) Influence of probiotic supplementation on climacteric symptoms in menopausal women-a mini review. Int J Appl Pharm 10(6):43–46

    CAS  Google Scholar 

  13. Sivamaruthi BS, Kesika P, Chaiyasut C (2018) A review on anti-aging properties of probiotics. Int J Appl Pharm 10(5):23–27

    CAS  Google Scholar 

  14. Sivamaruthi BS, Kesika P, Chaiyasut C (2018) Probiotic based therapy for atopic dermatitis: outcomes of clinical studies. Asian Pac J Trop Biomed 8(6):328–332

    Google Scholar 

  15. Sivamaruthi BS, Kesika P, Suganthy N, Chaiyasut C (2019) A review on role of microbiome in obesity and antiobesity properties of probiotic supplements. Biomed Res Int 2019:3291367–3291320. https://doi.org/10.1155/2019/3291367

    Article  CAS  Google Scholar 

  16. Sivamaruthi BS, Prasanth MI, Kesika P, Chaiyasut C (2019) Probiotics in human mental health and diseases-a mini review. Trop J Pharm Res 18(4):889–895

    CAS  Google Scholar 

  17. Sivamaruthi BS, Kesika P, Chaiyasut C (2019) A mini-review of human studies on cholesterol-lowering properties of probiotics. Sci Pharm 87:26. https://doi.org/10.3390/scipharm87040026

    Article  CAS  Google Scholar 

  18. Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113:188–196

    Google Scholar 

  19. Hasan N, Yang H (2019) Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7:e7502. https://doi.org/10.7717/peerj.7502

    Article  Google Scholar 

  20. Manji F, Dahlen G, Fejerskov O (2018) Caries and periodontitis: contesting the conventional wisdom on their aetiology. Caries Res 52(6):548–564

    Google Scholar 

  21. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montjin RC, ten Cate JM, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87(11):1016–1020

    CAS  Google Scholar 

  22. Xu X, He J, Xue J, Wang Y, Li K, Zhang K, Guo Q, Liu X, Zhou Y, Cheng L, Li M, Li Y, Li Y, Shi W, Zhou X (2015) Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 17(3):699–710

    Google Scholar 

  23. Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D (2013) Dental caries from a molecular microbiological perspective. Caries Res 47(2):89–102

    CAS  Google Scholar 

  24. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46(4):1407–1417

    CAS  Google Scholar 

  25. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732

    Google Scholar 

  26. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol 5:10. https://doi.org/10.3389/fcimb.2015.00010

    Article  CAS  Google Scholar 

  27. Xiao J, Moon Y, Li L, Rustchenko E, Wakabayashi H, Zhao X, Feng C, Gill SR, McLaren S, Malmstrom H, Ren Y, Quivey R, Koo H, Kopycka-Kedzierawski DT (2016) Candida albicans carriage in children with severe early childhood caries (S-ECC) and maternal relatedness. PLoS One 11(10):e0164242. https://doi.org/10.1371/journal.pone.0164242

    Article  CAS  Google Scholar 

  28. Pereira D, Seneviratne CJ, Koga-Ito CY, Samaranayake LP (2018) Is the oral fungal pathogen Candida albicans a cariogen? Oral Dis 24(4):518–526

    Google Scholar 

  29. Hemadi AS, Huang R, Zhou Y, Zou J (2017) Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci 9(11):e1. https://doi.org/10.1038/ijos.2017.35

    Article  CAS  Google Scholar 

  30. Xiao J, Huang X, Alkhers N, Alzamil H, Alzoubi S, Wu TT, Castillo DA, Campbell F, Davis J, Herzog K, Billings R, Kopycka-Kedzierawski DT, Hajishengallis E, Koo H (2018) Candida albicans and early childhood caries: a systematic review and meta-analysis. Caries Res 52(1–2):102–112

    Google Scholar 

  31. Caufield PW, Schön CN, Saraithong P, Li Y, Argimón S (2015) Oral Lactobacilli and dental caries: a model for niche adaptation in humans. J Dent Res 94(9 Suppl):110S–118S

    CAS  Google Scholar 

  32. Tanner AC, Mathney JM, Kent RL, Chalmers NI, Hughes CV, Loo CY, Pradhan N, Kanasi E, Hwang J, Dahlan MA, Papadopolou E, Dewhirst FE (2011) Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol 49(4):1464–1474

    CAS  Google Scholar 

  33. Jiang S, Gao X, Jin L, Lo EC (2016) Salivary microbiome diversity in caries-free and caries-affected children. International Int J Mol Sci 17(12):E1978

    Google Scholar 

  34. Agnello M, Marques J, Cen L, Mittermuller B, Huang A, Chaichanasakul Tran N, Shi W, He X, Schroth RJ (2017) Microbiome associated with severe caries in Canadian First Nations children. J Dent Res 96(12):1378–1385

    CAS  Google Scholar 

  35. Kanasi E, Johansson I, Lu SC, Kressin NR, Nunn ME, Kent R Jr, Tanner AC (2010) Microbial risk markers for childhood caries in pediatricians’ offices. J Dent Res 89(4):378–383

    CAS  Google Scholar 

  36. Ventura M, Turroni F, Zomer A, Foroni E, Giubellini V, Bottacini F, Canchaya C, Claesson MJ, He F, Mantzourani M, Mulas L, Ferrarini A, Gao B, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Gupta RS, Zhang Z, Beighton D, Fitzgerald GF, O'Toole PW, van Sinderen D (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 5(12):e1000785. https://doi.org/10.1371/journal.pgen.1000785

    Article  CAS  Google Scholar 

  37. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40(3):1001–1009

    CAS  Google Scholar 

  38. Corby PM, Bretz WA, Hart TC, Schork NJ, Wessel J, Lyons-Weiler J, Paster BJ (2007) Heritability of oral microbial species in caries-active and caries-free twins. Twin Res Hum Genet 10(6):821–828

    Google Scholar 

  39. Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190(13):4632–4640

    CAS  Google Scholar 

  40. Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ (2011) Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genet 4:22. https://doi.org/10.1186/1755-8794-4-22

    Article  CAS  Google Scholar 

  41. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL (2012) Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 7(10):e47722

    CAS  Google Scholar 

  42. Innes NPT, Robertson MD (2018) Recent advances in the management of childhood dental caries. Arch Dis Child 103(4):311–315

    Google Scholar 

  43. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela R, Meurman JH (2001) Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 35(6):412–420

    Google Scholar 

  44. Pohjavuori S, Ahola AJ, Yli-Knuuttila H, Piirainen L, Poussa T, Meurman JH, Korpela R (2010) Effect of consumption of Lactobacillus rhamnosus GG and calcium, in carrot-pineapple juice on dental caries risk in children. Int J Probiotics Prebiotics 5(4):221–228

    Google Scholar 

  45. Cortés-Dorantes N, Ruiz-Rodríguez MS, Karakowsky-Kleiman L, Garrocho-Rangel JA, Sánchez-Vargas LO, Pozos-Guillén AJ (2015) Probiotics and their effect on oral bacteria count in children: a pilot study. Eur J Paediatr Dent 16(1):56–60

    Google Scholar 

  46. Hedayati-Hajikand T, Lundberg U, Eldh C, Twetman S (2015) Effect of probiotic chewing tablets on early childhood caries - a randomized controlled trial. BMC Oral Health 15(1):112. https://doi.org/10.1186/s12903-015-0096-5

    Article  CAS  Google Scholar 

  47. Jindal G, Pandey RK, Agarwal J, Singh M (2011) A comparative evaluation of probiotics on salivary mutans streptococci counts in Indian children. Eur Arch Paediatr Dent 12(4):211–215

    CAS  Google Scholar 

  48. Burton JP, Drummond BK, Chilcott CN, Tagg JR, Thomson WM, Hale JD, Wescombe PA (2013) Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol 62(Pt 6):875–884

    Google Scholar 

  49. Cannon M, Trent B, Vorachek A, Kramer S, Esterly R (2013) Effectiveness of CRT at measuring the salivary level of bacteria in caries prone children with probiotic therapy. J Clin Pediatr Dent 38(1):55–60

    Google Scholar 

  50. Stensson M, Koch G, Coric S, Abrahamsson TR, Jenmalm MC, Birkhed D, Wendt LK (2014) Oral administration of Lactobacillus reuteri during the first year of life reduces caries prevalence in the primary dentition at 9 years of age. Caries Res 48(2):111–117

    CAS  Google Scholar 

  51. Stecksén-Blicks C, Sjöström I, Twetman S (2009) Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res 43(5):374–381

    Google Scholar 

  52. Di Pierro F, Zanvit A, Nobili P, Risso P, Fornaini C (2015) Cariogram outcome after 90 days of oral treatment with Streptococcus salivarius M18 in children at high risk for dental caries: results of a randomized, controlled study. Clin Cosmet Investig Dent 7:107–113

    Google Scholar 

  53. Kaye EK (2017) Daily intake of probiotic lactobacilli may reduce caries risk in young children. J Evid Based Dent Pract 17(3):284–286

    Google Scholar 

  54. Lin YJ, Chou CC, Hsu CS (2017) Effects of Lactobacillus casei Shirota intake on caries risk in children. J Dent Sci 12(2):179–184

    Google Scholar 

  55. Kaur K, Nekkanti S, Madiyal M, Choudhary P (2018) Effect of chewing gums containing probiotics and xylitol on oral health in children: a randomized controlled trial. J Int Oral Health 10(5):237–243

    Google Scholar 

  56. Teanpaisan R, Piwat S, Tianviwat S, Sophatha B, Kampoo T (2015) Effect of long-term consumption of Lactobacillus paracasei SD1 on reducing mutans streptococci and caries risk: a randomized placebo-controlled trial. Dent J (Basel) 3(2):43–54

    Google Scholar 

  57. Pahumunto N, Piwat S, Chankanka O, Akkarachaneeyakorn N, Rangsitsathian K, Teanpaisan R (2018) Reducing mutans streptococci and caries development by Lactobacillus paracasei SD1 in preschool children: a randomized placebo-controlled trial. Acta Odontol Scand 76(5):331–337

    Google Scholar 

  58. Pahumunto N, Sophatha B, Piwat S, Teanpaisan R (2019) Increasing salivary IgA and reducing Streptococcus mutans by probiotic Lactobacillus paracasei SD1: a double-blind, randomized, controlled study. J Dent Sci 14(2):178–184

    Google Scholar 

  59. Hasslöf P, West CE, Videhult FK, Brandelius C, Stecksén-Blicks C (2013) Early intervention with probiotic Lactobacillus paracasei F19 has no long-term effect on caries experience. Caries Res 47(6):559–565

    Google Scholar 

  60. Villavicencio J, Villegas LM, Arango MC, Arias S, Triana F (2018) Effects of a food enriched with probiotics on Streptococcus mutans and Lactobacillus spp. salivary counts in preschool children: a cluster randomized trial. J Appl Oral Sci 26:e20170318. https://doi.org/10.1590/1678-7757-2017-0318

    Article  CAS  Google Scholar 

  61. Piwat S, Pahumunto N, Srisommai P, Mapaisansin C, Teanpaisan R (2019) Effect of probiotic delivery vehicles for probiotic Lactobacillus rhamnosus SD11 in caries prevention: a clinical study. J Food Process Preserv 43(10):e14147. https://doi.org/10.1111/jfpp.14147

    Article  CAS  Google Scholar 

  62. Angarita-Díaz MP, Forero-Escobar D, Cerón-Bastidas XA, Cisneros-Hidalgo CA, Dávila-Narvaez F, Bedoya-Correa CM, Freitas SC, Cabrera-Arango CL, Melo-Colina R (2019) Effects of a functional food supplemented with probiotics on biological factors related to dental caries in children: a pilot study. Eur Arch Paediatr Dent 21:161–169. https://doi.org/10.1007/s40368-019-00468-y

    Article  Google Scholar 

  63. Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlström A, Meurman JH, Korpela R (2002) Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol 47(11):799–804

    CAS  Google Scholar 

  64. Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S (2005) Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adult. Acta Odontol Scand 63(6):317–320

    Google Scholar 

  65. Zahradnik RT, Magnusson I, Walker C, McDonell E, Hillman CH, Hillman JD (2009) Preliminary assessment of safety and effectiveness in humans of ProBiora3™ a probiotic mouthwash. J Appl Microbiol 107(2):682–690

    CAS  Google Scholar 

  66. Slawik S, Staufenbiel I, Schilke R, Nicksch S, Weinspach K, Stiesch M, Eberhard J (2011) Probiotics affect the clinical inflammatory parameters of experimental gingivitis in humans. Eur J Clin Nutr 65(7):857–863

    CAS  Google Scholar 

  67. Chuang LC, Huang CS, Ou-Yang LW, Lin SY (2011) Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin Oral Investig 15(4):471–476

    Google Scholar 

  68. Teanpaisan R, Piwat S (2014) Lactobacillus paracasei SD1, a novel probiotic, reduces mutans streptococci in human volunteers: a randomized placebo-controlled trial. Clin Oral Investig 18(3):857–862

    Google Scholar 

  69. Nishihara T, Suzuki N, Yoneda M, Hirofuji T (2014) Effects of Lactobacillus salivarius-containing tablets on caries risk factors: a randomized open-label clinical trial. BMC Oral Health 14:110. https://doi.org/10.1186/1472-6831-14-110

    Article  Google Scholar 

  70. Petersson LG, Magnusson K, Hakestam U, Baigi A, Twetman S (2011) Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odontol Scand 69(6):321–327

    CAS  Google Scholar 

  71. Tandelilin RTC, Widita E, Agustina D, Saini R (2018) The effect of oral probiotic consumption on the caries risk factors among high-risk caries population. J Int Oral Health 10(3):132–137

    Google Scholar 

  72. Huang X, Palmer SR, Ahn SJ, Richards VP, Williams ML, Nascimento MM, Burne R (2016) A highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans. Appl Environ Microbiol 82(7):2187–2201

    CAS  Google Scholar 

  73. López-López A, Camelo-Castillo A, Ferrer MD, Simon-Soro Á, Mira A (2017) Health-associated niche inhabitants as oral probiotics: the case of Streptococcus dentisani. Front Microbiol 8:379. https://doi.org/10.3389/fmicb.2017.00379

    Article  Google Scholar 

  74. Walker GV, Heng NCK, Carne A, Tagg JR, Wescombe PA (2016) Salivaricin E and abundant dextranase activity may contribute to the anti-cariogenic potential of the probiotic candidate Streptococcus salivarius JH. Microbiology 162(3):476–486

    CAS  Google Scholar 

  75. Wattanarat O, Makeudom A, Sastraruji T, Piwat S, Tianviwat S, Teanpaisan R, Krisanaprakornkit S (2015) Enhancement of salivary human neutrophil peptide 1-3 levels by probiotic supplementation. BMC Oral Health 15:19. https://doi.org/10.1186/s12903-015-0003-0

    Article  Google Scholar 

  76. Taipale T, Pienihäkkinen K, Alanen P, Jokela J, Söderling E (2013) Administration of Bifidobacterium animalis subsp. lactis bb-12 in early childhood: a post-trial effect on caries occurrence at four years of age. Caries Res 47(5):364–372

    CAS  Google Scholar 

  77. Gizani S, Petsi G, Twetman S, Caroni C, Makou M, Papagianoulis L (2016) Effect of the probiotic bacterium Lactobacillus reuteri on white spot lesion development in orthodontic patients. Eur J Orthod 38(1):85–89

    Google Scholar 

  78. Lee Y (2013) Diagnosis and prevention strategies for dental caries. J Lifestyle Med 3(2):107–109

    Google Scholar 

  79. Baker JL, Edlund A (2019) Exploiting the oral microbiome to prevent tooth decay: has evolution already provided the best tools? Front Microbiol 9:3323. https://doi.org/10.3389/fmicb.2018.03323

    Article  Google Scholar 

  80. Nascimento MM, Alvarez AJ, Huang X, Hanway S, Perry S, Luce A, Richards VP, Burne RA (2019) Arginine metabolism in supragingival oral biofilms as a potential predictor of caries risk. JDR Clin Trans Res 4(3):262–270

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Chiang Mai University, Thailand, for the support. The research was partially supported by Chiang Mai University. The authors thankfully acknowledge the Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

B.S.S. contributed to the conception and design, acquisition, manuscript preparation, and critical revision of the manuscript. P.K. and C.C. were involved in the review and finalization of the manuscript. All the authors agree with the content of the manuscript.

Corresponding author

Correspondence to Chaiyavat Chaiyasut.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivamaruthi, B.S., Kesika, P. & Chaiyasut, C. A Review of the Role of Probiotic Supplementation in Dental Caries. Probiotics & Antimicro. Prot. 12, 1300–1309 (2020). https://doi.org/10.1007/s12602-020-09652-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09652-9

Keywords

Navigation