Skip to main content
Log in

Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate (VTC) by adding CaCO3 was investigated. Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and CaCO3 in a reductive atmosphere, where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3. The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test. Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate, and the optimum conditions were a CaCO3 dosage of 18wt% and a reduction temperature of 1400°C. Additionally, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50 µm. Hence, the separation of calcium titanate and metallic iron will be the focus in the future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Y. Zhao, Y.W. Duan, X. Sun, Synthesis and characterization of CaTiO3 particles with controlled shape and size, New J. Chem., 37(2013), No. 4, p. 986.

    Article  CAS  Google Scholar 

  2. X.J. Lei, B.Q. Xu, B. Yang, B.B. Xu, and X.T. Guo, A novel method of synthesis and microstructural investigation of calcium titanate powders, J. Alloys Compd., 690(2017), p. 916.

    Article  CAS  Google Scholar 

  3. S. Holliday and A. Stanishevsky, Crystallization of CaTiO3 by sol-gel synthesis and rapid thermal processing, Surf. Coat. Technol., 188–189(2004), p. 741.

    Article  Google Scholar 

  4. S. Palaniandy and N.H. Jamil, Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles, J. Alloys Compd., 476(2009), No. 1–2, p. 894.

    Article  CAS  Google Scholar 

  5. J. Yang, L. Zhang, J.D. Wang, and J.N. Ji, Synthesis of calcium titanate by high temperature calcination with calcium hydroxide as calcium source, Refractories, 51(2017), No. 6, p. 452.

    Google Scholar 

  6. S. Manafi, M. Jafarian, and M. Jafarian, Determining the optimal conditions for calcium titanate nanostructures synthesized by mechanical alloying method, Adv. Ceram. Prog., 1(2015), No. 1, p. 11.

    Google Scholar 

  7. Z.H. Li, Z.C. Wang, and G. Li, Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method, Powder Technol., 287(2016), p. 256.

    Article  CAS  Google Scholar 

  8. F.L. Yang and V. Hlavacek, Effective extraction of titanium from rutile by a low-temperature chloride process, AIChE J., 46(2000), No. 2, p. 355.

    Article  CAS  Google Scholar 

  9. W.D. Tang, X.X. Xue, S.T. Yang, L.H. Zhang, and Z. Huang, Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium-titanium magnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 871.

    Article  CAS  Google Scholar 

  10. M. Imtiaz, M.S. Rizwan, S.L. Xiong, H.L. Li, M. Ashraf, S.M. Shahzad, M. Shahzad, M. Rizwan, and S.X. Tu, Vanadium, recent advancements and research prospects: A review, Environ. Int., 80(2015), p. 79.

    Article  CAS  Google Scholar 

  11. Y.Z. Xue, X.F. Wang, H.J. Wang, and W.C. Li, On comprehensive utilization of vanadium-titanium magnetite resources in Panzhihua-Xichang region of Sichuan province, Nat. Resour. Econ. China, 30(2017), No. 4, p. 9.

    Google Scholar 

  12. H.X. Mao, R.D. Zhang, X.L. Lv, C.G. Bai, and X.B. Huang, Effect of surface properties of iron ores on their granulation behavior, ISIJ Int., 53(2013), No. 9, p. 1491.

    Article  CAS  Google Scholar 

  13. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684.

    Article  CAS  Google Scholar 

  14. C. Feng, M.S. Chu, J. Tang, and Z.G. Liu, Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 609.

    Article  CAS  Google Scholar 

  15. W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying, Reduction behavior of vanadium-titanium magnetite carbon composite hot briquette in blast furnace process, Powder Technol., 342(2019), p. 214.

    Article  CAS  Google Scholar 

  16. B.C. Jena, W. Dresler, and I.G. Reilly, Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Miner. Eng., 8(1995), No. 1–2, p. 159.

    Article  CAS  Google Scholar 

  17. T.Y. Hu, T.C. Sun, J. Kou, C. Geng, X.P. Wang, and C. Chen, Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust, Int. J. Miner. Process., 165(2017), p. 28.

    Article  CAS  Google Scholar 

  18. S. Samanta, M.C. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey, Mineralogy and carbothermal reduction behavior of vanadium-bearing titaniferous magnetite ore in Eastern India, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 917.

    Article  CAS  Google Scholar 

  19. G.M. Zhang, K.Q. Feng, and H.F. Yue, Theoretical analyses and experimental investigations of selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates for preparation of iron-based wear-resistant material, JOM, 68(2016), No. 9, p. 2525.

    Article  CAS  Google Scholar 

  20. Y.M. Zhang, L.Y. Yi, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification-direct reduction coupled process, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 504.

    Article  Google Scholar 

  21. Y. Man, J.X. Feng, F.J. Li, Q. Ge, Y.M. Chen, and J.Z. Zhou, Influence of temperature and time on reduction behavior in iron ore-coal composite pellets, Powder Technol., 256(2014), p. 361.

    Article  CAS  Google Scholar 

  22. Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152.

    Article  CAS  Google Scholar 

  23. B.K. Sarkar, S. Samanta, R. Dey, and G.C. Das, A study on reduction kinetics of titaniferous magnetite ore using lean grade coal, Int. J. Miner. Process., 152(2016), p. 36.

    Article  CAS  Google Scholar 

  24. C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction-melting-magnetic separation processing, JOM., 69(2017), No. 10, p. 1801.

    Article  CAS  Google Scholar 

  25. S.T. Yang, M. Zhou, T. Jiang, and X.X. Xue, Isothermal reduction kinetics and mineral phase of chromium-bearing vanadium-titanium sinter reduced with CO gas at 873–1273 K, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 145.

    Article  CAS  Google Scholar 

  26. J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20.

    Article  CAS  Google Scholar 

  27. Z.G. Liu, M.S. Chu, H.T. Wang, W. Zhao, and X.X. Xue, Effect of MgO content in sinter on the softening-melting behavior of mixed burden made from chromium-bearing vanadium-titanium magnetite, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 25.

    Article  CAS  Google Scholar 

  28. T. Jiang, J. Xu, S.F. Guan, and X.X. Xue, Study on coal-based direct reduction of high-chromium vanadium-titanium magnetite, J. Northeastern Univ. (Nat. Sci.), 36(2015), No. 1, p. 77.

    CAS  Google Scholar 

  29. S.M. Jung, Effects of CaO/CaCO3 on the carbothermic reduction of titanomagnetite ores, Metall. Mater. Trans. B., 46(2015), No. 3, p. 1162.

    Article  CAS  Google Scholar 

  30. L.H. Zhou, Effects of CaO as an additive on the reduction of the vanadic-titanomagnetite-coal mixed pellets, J. Mater. Sci. Eng., 28(2010), No. 3, p. 345.

    CAS  Google Scholar 

  31. C. Chen, T.C. Sun, X.P. Wang, and T.Y. Hu, Effects of MgO on the reduction of vanadium titanomagnetite concentrates with char, JOM, 69(2017), No. 10, p. 1759.

    Article  CAS  Google Scholar 

  32. C. Chen, T.C. Sun, J. Kou, and Y.Q. Zhao, Carbothermic reduction of vanadium titanomagnetite concentrate with magnesium compounds, Chin. J. Rare Met., 42(2018), No. 7, p. 765.

    Google Scholar 

  33. X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of temperature on Fe and Ti in carbothermic reduction of vanadium titanomagnetite with adding MgO, Physicochem. Probl. Miner. Process., 55(2019), No. 4, p. 917.

    CAS  Google Scholar 

  34. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO, J. Iron Steel Res. Int., 24(2017), No. 1, p. 34.

    Article  Google Scholar 

  35. Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, J. Alloys Compd., 706(2017), p. 546.

    Article  CAS  Google Scholar 

  36. Y.Q. Zhao, T.C. Sun, H.Y. Zhao, X.H. Li, and X.P. Wang, Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore, ISIJ Int., 58(2018), No. 10, p. 1768.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51674018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Kou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xh., Kou, J., Sun, Tc. et al. Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. Int J Miner Metall Mater 27, 745–753 (2020). https://doi.org/10.1007/s12613-019-1903-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1903-9

Keywords

Navigation