Skip to main content
Log in

Origin of the infra-red emission peak in freezing water

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

When droplets of purified water (1–5 μl) were cooled from the bottom, they slowly and continuously supercooled before releasing latent heat as a transient burst of infra-red (IR) radiation. In order to determine the role of this IR emission, a thin rectangular water layer was cooled unilaterally while imaged from above by an infrared (FLIR) camera. The first noticeable event was an IR burst that rapidly (< 0.1 s) moved through a 5-mm-long path of water. Final solidification of the water layer was recognized by an increase in volume, as the meniscus at the air interface changed from concave to convex. The propagation of the IR burst through the water layer preceded the first visible onset of volume increase and solidification by more than one second. The transient and early appearance of the IR burst belongs to what is called the first stage of freezing. This stage has been linked to the formation of so-called spongy ice. Both IR burst and pinnately shaped spongy ice appear at the same time and share a short transient existence. It is only this early type of ice that is associated with the IR burst. By contrast, the later-occurring solid ice formation parallels a diminishing IR emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T Takahashi J. Atmos. Sci. 35 1536 (1978).

    Article  ADS  Google Scholar 

  2. P Mazur Science 168 939 (1970)

    Article  ADS  Google Scholar 

  3. M S Brown, E S B Pereira, B J Finkle Plant Physiol. 53 709 (1974)

    Article  Google Scholar 

  4. Bauerecker, P Ulbig, V Buch, L Vrbka, P Jungwirth J. Phys. Chem. C 112 7631 (2008)

    Article  Google Scholar 

  5. D B Idle Ann. Bot. 30 199 (1966).

    Article  Google Scholar 

  6. V F Petrenko, R W Whitworth Physics of ice (London: Oxford University Press) (1999).

    Google Scholar 

  7. B M Weckhuysen Chem. Soc. Rev. 39 4802 (2010).

    Article  Google Scholar 

  8. W C Macklin, B F Ryan J. Atmos. Sci. 22 452 (1965) https://journals.ametsoc.org/doi/pdf/ https://doi.org/10.1175/1520-0469(1965)022%3c0452:tsoigi%e2.0.co%382

  9. Y Furukawa, W Shimada J. Cryst. Growth 1128 234 (1993)

    Article  ADS  Google Scholar 

  10. W C Macklin, B F Ryan (1962) Q. J. R. Meteorol. Soc. 88(378) 548 (1962)

    Article  ADS  Google Scholar 

  11. J Palca J Scientists keep water below zero liquid far below zero degree. NPR, Science, Morning Edition, Article #1233376191(2010)

  12. Fuller, M P, Wisniewski, M (1998) J. Therm. Biol. 23: 81 (1998)

    Article  Google Scholar 

  13. S Shimokawa, T Yokono, T Mizuno, H Tamura, T Erata, T Araiso (2004) Jpn. J. Appl. Phys. 43 L545 (2004).

    Article  ADS  Google Scholar 

  14. J D Brownridge (2011) Am. J. Phys. 79 78 (2011)

  15. Y Tao, W Zou, J Jia, W Li, D Cremer J. Chem. Theory Comput. 13 55 (2017)

    Article  Google Scholar 

  16. M Kowacs, M Marchel, L Juknaite, J M S Esperanca, M R Romao, A L Carvalho, L P Rebelo (2017) J. Cryst. Growth 457 362 (2017)

    Article  ADS  Google Scholar 

  17. R R Gilpin Int. J. Heat Mass Transf. 20(6) 693 (1977) https://doi.org/10.1016/0017-9310(77)90057-6.

    Article  Google Scholar 

  18. J J M Guzman, S L Braga Int. J. Thermophys. (2005) 26 1781.(2005). https://doi.org/10.1007/s10765-005-8596-1.

  19. D E Pegg Methods Mol. Biol. 368 39 (2007)

    Article  Google Scholar 

  20. T G Nunes, E W Randall, G Guillot Solid State Nuclear Magn. Reson. 32 59 (2007)

    Article  Google Scholar 

  21. A A Shibkov, Y I Golovin, M A Zheltov, A A Korolev, AA Leonov J. Cryst. Growth 236 434 (2002)

    Article  ADS  Google Scholar 

  22. E So, R Stahlberg, G H Pollack (eds.) D W Pepper and C A Brebbia Water Soc., p 3 (2012)

  23. G H Pollack The Fourth Phase of Water: Beyond Solid, Liquid and Vapor (USA, Seattle: Ebner & Sons) p 135 (2013) www.ebnerandsons.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Stahlberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stahlberg, R., Yoo, H. & Pollack, G.H. Origin of the infra-red emission peak in freezing water. Indian J Phys 93, 221–227 (2019). https://doi.org/10.1007/s12648-018-1265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1265-6

Keywords

PACS Nos.

Navigation