Skip to main content

Advertisement

Log in

Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

New tendencies respect to economic development model in the process of agro-industrial materials are oriented to circular economy in which the treatment and reuse of wastes and by-product play a crucial role. Over the last decades, different products from agro-food industries have been processed by membrane technologies (micro, ultra and nano-filtration). Today, these pressure-driven membrane processes have been subjected to various applications, like food wastes, bioproduct, and by-product processing. However, the most challenging issue concerns about the recovery of high-added value components from their by-products. The aim of this work is to provide a wide understanding of the current framework for membrane technology in this field. Thereby, the utilization of aqueous wastes from industries is highlighted; it denotes the real advantages that these methodologies offer in terms of high-added value solute recovery. Finally, this review discusses in detail the following aspects: framework of integrated membrane systems in wastewater fractionation, the economic framework as the limitation of membrane technology, and the environmental benefits of membrane technology (water reclamation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MF:

Microfiltration

UF:

Ultrafiltration

NF:

Nanofiltration

TMP:

Transmembrane pressure

MWCO:

Molecular weight cut-off

R & D:

Research and development

References

  1. Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Cleaner Prod. 114, 11–32 (2016). 10.1016/j.jclepro.2015.09.007

    Article  Google Scholar 

  2. Ren, J., Manzardo, A., Toniolo, S., Scipioni, A.: Sustainability of hydrogen supply chain. Part I: identification of critical criteria and cause-effect analysis for enhancing the sustainability using DEMATEL. Int. J. Hydrogen Energy. 38(33), 14159–14171 (2013). 10.1016/j.ijhydene.2013.08.126

    Article  Google Scholar 

  3. Mirabella, N., Castellani, V., & Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Cleaner Prod.. 65, 28–41 (2014). doi:10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  4. Petruccioli, M., Raviv, M., Di Silvestro, R., Dinelli, G.: Agriculture and agro-industrial wastes, by-products, and wastewaters. Comprehensive Biotechnology. In: Moo-Young, M. (ed.). UK: Elsevier (2011). doi:10.1016/B978-0-08-088504-9.00389-5

    Google Scholar 

  5. Russo, C.: A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 288, 239–246 (2007). 10.1016/j.memsci.2006.11.020

    Article  Google Scholar 

  6. Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog.. 2(1), 46–56 (2003). doi:10.1002/ep.670220116

    Article  Google Scholar 

  7. Galanakis, C.M.: Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 42, 44–63 (2015). doi:10.1016/j.tifs.2014.11.005

    Article  Google Scholar 

  8. Galanakis, C.M.: Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012). 10.1016/j.tifs.2012.03.003

    Article  Google Scholar 

  9. Galanakis, C.M.: (2015). The universal recovery strategy. Food waste recovery: processing technologies and industrial techniques. In: Galanakis, C.M. (ed.).UK: Elsevier. doi:10.1016/B978-0-12-800351-0.00003-1

    Google Scholar 

  10. Li, J., Chase, H.A.: Applications of membrane techniques for purification of natural products. Biotechnol. Lett. 32, 601–608 (2010). doi:10.1007/s10529-009-0199-7

    Article  Google Scholar 

  11. Castro-Muñoz, R., Yáñez-Fernández, J., Fíla, V.: Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food. Chem. 213, 753–762 (2016). 10.1016/j.foodchem.2016.07.030

    Article  Google Scholar 

  12. Jiao, B., Cassano, A., Drioli, E.: Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 63, 303–324 (2004). 10.1016/j.jfoodeng.2003.08.003

    Article  Google Scholar 

  13. Cheryan, M., Rajagopalan, N.: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13–28 (1998). 10.1016/S0376-7388(98)00190-2

    Article  Google Scholar 

  14. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S.: Chemical treatment technologies for waste-water recycling-An overview. RSC Adv. 2, 6380–6388 (2012). DOI:10.1039/C2RA20340E

    Article  Google Scholar 

  15. Cassano, A., Donato, L., Conidi, C., Drioli, E.: Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innov. Food Sci. Emerg, Technol.. 9, 556–562 (2008). doi:10.1016/j.ifset.2008.03.004

    Article  Google Scholar 

  16. Conidi, C., Cassano, A., Garcia-Castello, E.: Valorization of artichoke wastewaters by integrated membrane process. Water Res. 48, 363–374 (2014). doi:10.1016/j.watres.2013.09.047

    Article  Google Scholar 

  17. Galanakis, C.M., Fountoulis, G., Gekas, V.: Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination. 286, 277–284 (2012)

    Article  Google Scholar 

  18. Galanakis, C.M., Tornberg, E., Gekas, V.: Clarification of high-added value products from olive mill wastewater. J. Food Eng. 99, 190–197 (2010). doi:10.1016/j.jfoodeng.2010.02.018

    Article  Google Scholar 

  19. Salehi, F.: Current and future applications for nanofiltration technology in the food processing. Food Bioprod. Process. 92, 161–177 (2014). doi:10.1016/j.fbp.2013.09.005

    Article  Google Scholar 

  20. Cassano, A., Conidi, C., Galanakis, C.M., Castro-Muñoz, R.: (2016). Recovery of polyphenols from olive mill wastewaters by membrane operations. Membrane technologies for biorefining. In: Figoli, A., A., Cassano, &amp, Basile, A. (eds.). UK: Elsevier. doi:10.1016/B978-0-08-100451-7.00007-4

    Google Scholar 

  21. Vojvodić, A., Komes, D., Vovk, I., Belščak-Cvitanović, A., Bušić, A.: (2016). Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res. Int. 89, 565–573. doi:10.1016/j.foodres.2016.07.023

    Article  Google Scholar 

  22. O’Neill, M.A., York, W.S.: (2003). The composition and structure of primary cell walls. The Plant Cell Wall. In: Rose, JKC. (ed.). UK: Blackwell Publishing

    Google Scholar 

  23. Bampidis, V.A., Robinson, P.H.: Citrus by-products as ruminant feeds : a review. Anim. Feed Sci. Technol. 128, 175–217 (2006). 10.1016/j.anifeedsci.2005.12.002

    Article  Google Scholar 

  24. Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., Caristi, C.: Flavonoids composition of citrus juices. Molecules. 12, 1641–1673 (2007). doi:10.3390/12081641

    Article  Google Scholar 

  25. Benavente-García, O., Castillo, J.: Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food. Chem. 56, 6185–6205 (2008). doi:10.1021/jf8006568

    Article  Google Scholar 

  26. Di Donna, L., De Luca, G., Mazzotti, F., Napoli, A., Salerno, R., Taverna, D., Sindona, G.: Statin-like principles of Bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 72, 1352–1354 (2009). doi:10.1021/np900096w

    Article  Google Scholar 

  27. Nakajiima, V.M., Macedo, G.A., Macedo, J.A.: Citrus bioactive phenolics: Roles in the obesity treatment. LWT-Food Sci. Technol. 59, 1205–1212 (2014). doi:10.1016/j.lwt.2014.02.060

    Article  Google Scholar 

  28. González-Molina, E., Domínguez-Perles, R., Moreno, D.A., García-Viguera, C.: Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 51, 327–354 (2010). 10.1016/j.jpba.2009.07.027

    Article  Google Scholar 

  29. Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H., Yano, Y.: Accumulation of carotenoids and expression of carotenoid biosynthesis genes during maturation in citrus fruit. Plant Physiol. 134, 824–837 (2004) doi:10.1104/pp.103.031104

    Article  Google Scholar 

  30. Matsumoto, H., Ikoma, Y., Kato, M., Kuniga, T., Nakajima, N., Yoshida, T.: Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J. Agric. Food. Chem. 55, 2356–2368 (2007). doi:10.1021/jf062629c

    Article  Google Scholar 

  31. O’Shea, N., Arendt, E.K., Gallagher, E.: Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 16, 1–10 (2012). 10.1016/j.ifset.2012.06.002

    Article  Google Scholar 

  32. Abirami, A., Nagarani, G., Siddhuraju, P.: Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima. Bioact. Carbohydr. Dietary Fibre. 4, 16–26 (2014). doi:10.1016/j.bcdf.2014.06.001

    Article  Google Scholar 

  33. Escobedo-Avellaneda, Z., Gutierrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A., Welti-Chanes, J.: Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods. 6, 470–481 (2014). doi:10.1016/j.jff.2013.11.013

    Article  Google Scholar 

  34. Barba, F.J., Brianceau, S., Turk, M., Boussetta, N., Vorobiev, E.: Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol. 8(5), 1139–1148 (2015). doi:10.1007/s11947-015-1482-3

    Article  Google Scholar 

  35. Brianceau, S., Turk, M., Vitrac, X., Vorobiev, E.: Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innova. Food Sci. Emerg. Technol. 29, 2–8 (2015). doi:10.1016/j.ifset.2014.07.010

    Article  Google Scholar 

  36. El Darra, N., Grimi, N., Vorobiev, E., Louka, N., Maroun, R.: Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol. 6(5), 1281–1289 (2013). doi:10.1007/s11947-012-0869-7

    Article  Google Scholar 

  37. Liazid, A., Guerrero, R.F., Cantos, E., Palma, M., Barroso, C.G.: Microwave assisted extraction of anthocyanins from grape skins. Food. Chem. 124(3), 1238–1243 (2011). doi:10.1016/j.foodchem.2010.07.053

    Article  Google Scholar 

  38. Bleve, M., Ciurlia, L., Erroi, E., Lionetto, G., Longo, L., Rescio, L., Schettino, T., Vasapollo, G.: An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep. Purif. Technol. 64(2), 192–197 (2008). doi:10.1016/j.seppur.2008.10.012

    Article  Google Scholar 

  39. Pascual-Martí, M.: Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta. 54(4), 735–740 (2001). doi:10.1016/S0039-9140(01)00319-8

    Article  Google Scholar 

  40. Corrales, M., García, A.F., Butz, P., Tauscher, B.: Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 90(4), 415–421 (2009). doi:10.1016/j.jfoodeng.2008.07.003

    Article  Google Scholar 

  41. Stavikova, L., Polovka, M., Hohnova, B., Karasek, P., Roth, M.: Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Talanta. 85(4), 2233–2240 (2011). doi:10.1016/j.talanta.2011.07.079

    Article  Google Scholar 

  42. Rajha, H.N., Chacar, S., Afif, C., Vorobiev, E., Louka, N., Maroun, R.G.: β-cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J. Agric. Food. Chem. 63(13), 3387–3393 (2015). doi:10.1021/acs.jafc.5b00672

    Article  Google Scholar 

  43. Wong Paz, J.E., Muñiz Márquez, D.B., Martínez Ávila, G.C.G., Belmares Cerda, R.E., Aguilar, C.N.: Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason. Sonochem. 22, 1–8 (2014). 10.1016/j.ultsonch.2014.06.001

    Google Scholar 

  44. Sarkar, B., Chakrabart, P.P., Vijaykumar, A., Kale, V.: Wastewater treatment in diary industries-possibility of reuse. Desalination. 195, 141–152 (2006). doi:10.1016/S0011-9164(02)00661-6

    Article  Google Scholar 

  45. Yorgun, M.S., Akmehmet, I., Saygin, O.: Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination. 229, 204–216 (2008). doi:10.1016/j.desal.2007.09.008

    Article  Google Scholar 

  46. Cassano, A., Conidi, C., Giorno, L., & Drioli, E. : Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 248–249, 185–193 (2013). doi:10.1016/j.jhazmat.2013.01.006

    Article  Google Scholar 

  47. Cassano, A., Conidi, C., Drioli, E.: Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res. 45, 3197–3204 (2011). doi:10.1016/j.watres.2011.03.041

    Article  Google Scholar 

  48. Conidi, C., Mazzei, R., Cassano, A., Giorno, L.: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. J. Membr. Sci. 454, 322–329 (2014). doi:10.1016/j.memsci.2013.12.021

    Article  Google Scholar 

  49. El-Abbassi, A., Khayet, M., Hafidi, A.: Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Res. 45, 4522–4530 (2011). doi:10.1016/j.watres.2011.05.044

    Article  Google Scholar 

  50. Akdemir, E.O., Ozer, A.: Application of a statistical technique for olive oil mill wastewater treatment using ultrafiltration process. Sep. Purif. Technol. 62, 222–227 (2008). doi:10.1016/j.seppur.2008.01.006

    Article  Google Scholar 

  51. Akdemir, E.O., Ozer, A.: Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination. 249, 660–666 (2009). doi:10.1016/j.desal.2008.06.035

    Article  Google Scholar 

  52. Yahiaoui, O., Lounici, H., Abdi, N., Drouiche, N., Ghaffour, N., Pauss, A., Mameri, N.: Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes. Chem. Eng. Process. Process Intensif. 50, 37–41 (2011). doi:10.1016/j.cep.2010.11.003

    Article  Google Scholar 

  53. Conidi, C., Rodriguez-Lopez, A.D., Garcia-Castello, E.M., Cassano, A.: Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep. Purif. Technol. 144, 153–161 (2015). doi:10.1016/j.seppur.2015.02.025

    Article  Google Scholar 

  54. Cassano, A., Conidi, C., Ruby Figueroa, R., Castro-Muñoz, R.: A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int. J. Mol. Sci. 16, 8968–8987 (2015). doi:10.3390/ijms16048968

    Article  Google Scholar 

  55. Leberknight, J., Wielenga, B., Lee-Jewett, A., Menkhaus, T.J.: Recovery of high value protein from a corn ethanol process by ultrafiltration and an exploration of the associated membrane fouling. J. Membr. Sci. 366, 405–412 (2011). 10.1016/j.memsci.2010.10.033

    Article  Google Scholar 

  56. Cassano, A., Cabri, W., Mombelli, G., Peterlongo, F., Giorno, L.: Recovery of bioactive compounds from artichoke brines by nanofiltration. Food Bioprod. Process. 98, 257–265 (2016). doi:10.1016/j.fbp.2016.02.004

    Article  Google Scholar 

  57. Castro-Muñoz, R., Yáñez-Fernández, J.: Valorization of nixtamalization wastewaters by integrated membrane process. Food Bioprod. Process. 95, 7–18 (2015). doi:10.1016/j.fbp.2015.03.006

    Article  Google Scholar 

  58. Castro-Muñoz, R., Orozco-Álvarez, C., Cerón-Montes, G.I., Yáñez-Fernández, J.: Characterization of the microfiltration process for the treatment of nixtamalization wastewaters. Ingeniería Agrícola y Biosistemas. 7(1), 23–34 (2015). doi:10.5154/r.inagbi.2015.03.001

    Article  Google Scholar 

  59. Castro-Muñoz, R., Cerón-Montes, G.I., Barragán-Huerta, B.E., Yáñez-Fernández, J.: Recovery of carbohydrates from nixtamalization wastewaters (Nejayote) by ultrafiltration. Revista Mexicana de Ingeniería Química. 14(3), 735–744 (2015)

    Google Scholar 

  60. Castro-Muñoz, R., Barragán-Huerta, B.E., Yáñez-Fernández, J.: The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste Biomass Valoriz.. 7(5), 1167–1176 (2016). doi:10.1007/s12649-016-9512-6

    Article  Google Scholar 

  61. Ruby-Figueroa, R., Cassano, A., Drioli, E.: Ultrafiltration of orange press liquor: optimization of operating conditions for the recovery of antioxidant compounds by response surface methodology. Sep. Purif. Technol. 98, 255–261 (2012). doi:10.1016/j.seppur.2012.07.022

    Article  Google Scholar 

  62. Conidi, C., Cassano, A., Drioli, E.: Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867–874 (2012). doi:10.1016/j.fbp.2012.07.005

    Article  Google Scholar 

  63. Díaz-Reinoso, B., Moure, A., Domínguez, H., Parajó, J.C.: Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J. Food Eng. 91, 587–593 (2009). doi:10.1016/j.jfoodeng.2008.10.007

    Article  Google Scholar 

  64. Díaz-Reinoso, B., González-López, N., Moure, A., Domínguez, H., Parajó, J.C.: Recovery of antioxidants from industrial waste liquors using membranes and polymeric resins. J. Food Eng. 96, 127–133 (2010). doi:10.1016/j.jfoodeng.2009.07.007

    Article  Google Scholar 

  65. Galanakis, C.M., Markouli, E., Gekas, V.: Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep. Purif. Technol. 107, 245–251 (2013). doi:10.1016/j.seppur.2013.01.034

    Article  Google Scholar 

  66. Patsioura, A., Galanakis, C.M., Gekas, V.: Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membr. Sci. 373, 53–63 (2011). doi:10.1016/j.memsci.2011.02.032

    Article  Google Scholar 

  67. Xu, L., Lamb, K., Layton, L., Kumar, A.: A membrane-based process for recovering isoflavones from a waste stream of soy processing. Food Res. Int. 37, 867–874 (2004). doi:10.1016/j.foodres.2004.05.004

    Article  Google Scholar 

  68. Moure, A., Domínguez, H., Parajo, J.C.: Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41, 447–456 (2006). doi:10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  69. Aguiar Prudencio, A.P., Schwinden Prudencio, E., Castanho Amboni, R.D.M., Negrao Murakami, A.N., Maraschin, M., Cunha Petrus, J.C., Ogliari, P.J., Santos Leite, R.: Phenolic composition and antioxidant activity of the aqueous of bark from residues from mate tree (Ilex paraguariensis St.Hil.) bark harvesting concentrated by nanofiltration. Food Bioprod. Process. 90, 399–405 (2012). doi:10.1016/j.fbp.2011.12.003

    Article  Google Scholar 

  70. Nawaz, H., Shi, J., Mittal, G.S., Kakuda, Y.: Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol. 48, 176–181 (2006). doi:10.1016/j.seppur.2005.07.006

    Article  Google Scholar 

  71. Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P., Chaplain- Derouniot, M., Guerard, F.: Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: application to the refining of bioactive peptidic fractions. Sep. Purif. Technol. 66, 463–471 (2009). doi:10.1016/j.seppur.2009.02.012

    Article  Google Scholar 

  72. Picot, L., Ravallec, R., Fouchereau-Peron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., et al.: Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agric. 90, 1819–1826 (2010). doi:10.1002/jsfa.4020

    Google Scholar 

  73. Almécija, M.C., Ibáñez, R., Guadix, A., Guadix, E.M.: Effect on pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J. Membr. Sci. 288, 28–35 (2007). doi:10.1016/j.memsci.2006.10.021

    Article  Google Scholar 

  74. Baldasso, C., Barros, T.C., Tessaro, I.C.: Concentration and purification of whey proteins by ultrafiltration. Desalination. 278, 381–386 (2011). doi:10.1016/j.desal.2011.05.055

    Article  Google Scholar 

  75. Cuartas-Uribe, B., Alcaina-Miranda, M.I., Soriano-Costa, E., Mendoza-Roca, J.A., Iborra-Clar, M.I., Lora-García, J.: A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination. 241, 244–255 (2009). doi:10.1016/j.desal.2007.11.086

    Article  Google Scholar 

  76. Crespo, J.G., Brazinha, C.: Membrane processing: Natural antioxidants from winemaking by-products. Filtration +. Separation. 47, 32–35 (2010). doi:10.1016/S0015-1882(10)70079-3

    Google Scholar 

  77. Cassano, A., Conidi, C., Drioli, E.: Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination. 250, 1101–1104 (2010). doi:10.1016/j.desal.2009.09.117

    Article  Google Scholar 

  78. Verma, S.P., Sarkar, B.: Analysis of flux decline during ultrafiltration of apple juice in a batch cell. Food Bioprod. Process. 94, 147–157 (2015). doi:10.1016/j.fbp.2015.03.002

    Article  Google Scholar 

  79. Astaraee, R.S., Mohammadi, T., Kasiri, N.: Analysis of BSA, dextran and humic acid fouling during ultrafiltration, experimental and modelling. Food Bioprod. Process. 94, 331–341 (2015). doi:10.1016/j.fbp.2014.04.003

    Article  Google Scholar 

  80. Galanakis, C.M., Castro-Muñoz, R., Cassano, A., Conidi, C.: (2016). Recovery of high-added-value compounds from food waste by membrane technology. Membrane technologies for biorefining. In: Figoli, A., Cassano, A., Basile, A. (eds.). UK: Elsevier. doi:10.1016/B978-0-08-100451-7.00008-6

    Google Scholar 

  81. Ruby-Figueroa, R.A., Cassano, A., Drioli, E.: Ultrafiltration of orange press liquor: optimization for permeate flux and fouling index by response surface methodology. Sep. Purif. Technol. 80, 1–10 (2011). doi:10.1016/j.seppur.2011.03.030

    Article  Google Scholar 

  82. Giacobbo, A., Do Prado, J.M., Meneguzzi, A., Moura Bernardes, A., De Pinho, M.N.: Microfiltration for the recovery of polyphenols from winery effluents. Sep. Purif. Technol. 143, 12–18 (2015). doi:10.1016/j.seppur.2015.01.019

    Article  Google Scholar 

  83. Giacobbo, A., Meneguzzi, A., Bernardes, A.M., De Pinho, M.N.: Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents. J. Cleaner Prod. 155, 172–178 (2016). doi:10.1016/j.jclepro.2016.07.033

    Article  Google Scholar 

  84. Garcia-Ivars, J., Iborra-Clar, M.I., Alcaina-Miranda, M.I., Mendoza-Roca, J.A., Pastor-Alcañiz, L.: Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds. J. Hazard. Mat. 290, 51–59 (2015). doi:10.1016/j.jhazmat.2015.02.062

    Article  Google Scholar 

  85. Paraskeva, C. A., Papadakis, V.G., Tsarouchi, E., Kanellopoulou, D.G., Koutsoukos, P.G.: Membrane processing for olive mill wastewater fractionation. Desalination. 213, 218–229 (2007). doi:10.1016/j.desal.2006.04.087

    Article  Google Scholar 

  86. Almanasrah, M., Brazinha, C., Kallioinen, M., Duarte, L.C., Roseiro, L.B., Bogel-Lukasik, R., Carvalheiro, F., Manttari, M., Crespo, J.G.: Nanofiltration and reverse osmosis as a platform production of natural botanic extracts: the case study of carob by-products. Sep. Purif. Technol. 149, 389–397 (2015). doi:10.1016/j.seppur.2015.06.008

    Article  Google Scholar 

  87. Brazinha, C., Cadima, M., Crespo, J.G.: Valorisation of spent coffee through membrane processing. J. Food Eng. 149, 123–130 (2015). doi:10.1016/j.jfoodeng.2014.07.016

    Article  Google Scholar 

  88. Santamaría, B., Salazar, G., Beltrán, S., Cabezas, J. L.: Membrane sequences for fractionation of polyphenolic extracts from defatted milled grape seeds. Desalination. 148, 103–109 (2002). doi:10.1016/S0011-9164(02)00661-6

    Article  Google Scholar 

  89. Cassano, A., Conidi, C., Ruby-Figueroa, R.: Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes. 4, 509–524 (2014). doi:10.3390/membranes4030509

    Article  Google Scholar 

  90. Córdova, A., Astudillo, C., Giorno, L., Guerrero, C., Conidi, C., Illanes, A., Cassano, A.: Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food Bioprod. Process. 98, 50–61 (2016). doi:10.1016/j.fbp.2015.11.005

    Article  Google Scholar 

  91. Tang, D.S., Yin, G.M., He, Y.Z., Hu, S.Q., Li, B., Li, L., et al.: Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem. Eng. J. 48, 1–5 (2009). doi:10.1016/j.bej.2009.05.019

    Article  Google Scholar 

  92. Galanakis, C.M., Chasiotis, S., Botsaris, G., Gekas, V.: Separation and recovery of proteins and sugars from Halloumi cheese whey. Food Res. Int. 65, 477–483 (2014). doi:10.1016/j.foodres.2014.03.060

    Article  Google Scholar 

  93. Soufi-Kechaou, E., Derouiniot-Chaplin, M., Ben Amar, R., Jaouen, P., & Berge, J.P.: Recovery of valuable marine compounds from cuttlefish by-product hydrolysates: combination of enzyme bioreactor and membrane technologies. Comptes Rendus Chimie, (2016). doi:10.1016/j.crci.2016.03.018

    Google Scholar 

  94. Sanmartín, B., Díaz, O., Rodríguez-Turienzo, L., Cobos, A.: Composition of caprine whey protein concentrates produced by membrane technology after clarification of cheese whey. Small Rumin. Res.. 105, 186–192 (2012). doi:10.1016/j.smallrumres.2011.11.020

    Article  Google Scholar 

  95. Cheang, B., Zydney, A.L.: A two-stage ultrafiltration process for fractionation of whey protein isolate. J. Membr. Sci. 231, 159–167 (2004). doi:10.1016/j.memsci.2003.11.014

    Article  Google Scholar 

  96. Scordino, M., Mauro, A.D., Passerini, A., Maccarone, E.: Highly purified sugar concentrate from a residue of citrus pigments recovery process. LWT-Food Sci. Technol.. 40, 713–721 (2007). doi:10.1016/j.lwt.2006.03.007

    Article  Google Scholar 

  97. Atra, R., Vatai, G., Bekassy-Molnar, E., Balint, A.: Investigation of ultra and nano-filtration for utilization of whey protein and lactose. J. Food Eng. 67, 325–332 (2005). doi:10.1016/j.jfoodeng.2004.04.035

    Article  Google Scholar 

  98. Gutiérrez-Macías, P., Montañez-Barragán, B., Barragán-Huerta, B. E.: A review of agro-food waste transformation into feedstock for reuse in fermentation. Fresenius Environ. Bull. 24(11), 3703–3716 (2015)

    Google Scholar 

  99. Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C., Drioli, E.: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883–3892 (2010). doi:10.1016/j.watres.2010.05.005

    Article  Google Scholar 

  100. Zagklis, D.P., Paraskeva, C.A.: Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values. Water Sci. Technol. 69, 202–207 (2014). doi:10.2166/wst.2013.683

    Article  Google Scholar 

  101. Zagklis, D.P., Vavouraki, A.I., Kornaros, M.E., Paraskeva, C.A.: Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard. Mat. 285, 69–76 (2015). doi:10.1016/j.jhazmat.2014.11.038

    Article  Google Scholar 

  102. Zagklis, D.P., Paraskeva, C.A.: Purification of grape marc phenolic compounds through membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 156, 328–335 (2015). doi:10.1016/j.seppur.2015.10.019

    Article  Google Scholar 

  103. Bazzarelli, F., Piacentini, E., Poerio, T., Mazzei, R., Cassano, A., Giorno, L.: Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J. Membr. Sci. 497, 402–409 (2016). doi:10.1016/j.memsci.2015.09.049

    Article  Google Scholar 

  104. Servili, M., Esposto, S., Veneziani, G., Urbani, S., Taticchi, A., Di Maio, I., Selvaggini, R., Sordini, B., Montedoro, G.: Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food. Chem. 124, 1308–1315 (2011). doi:10.1016/j.foodchem.2010.07.042

    Article  Google Scholar 

  105. Giacobbo, A., Moura Bernardes, A., De Pinho, M.N.: Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 48, 2524–2530 (2013). doi:10.1080/01496395.2013.809762

    Article  Google Scholar 

  106. Giacobbo, A., Oliveira, M., Duarte, E.C.N. F., Mira, H. M.C., Moura Bernardes, A., De Pinho, M.N.: Ultrafiltration based process for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 48, 438–444 (2013). doi:10.1080/01496395.2012.725793

    Article  Google Scholar 

  107. Giacobbo, A., Moura Bernardes, A., De Pinho, M.N.: Sequential pressure-driven membrane operations to recover and fractionate polyphenols and polysaccharides from second racking wine lees. Sep. Purif. Technol. 173, 49–54 (2017). doi:10.1016/j.seppur.2016.09.007

    Article  Google Scholar 

  108. Machado, M.T.C., Trevisan, S., Pimentel-Souza, J.D.R., Pastore, G.M., Hubinger, M. D.: Clarification and concentration of oligosaccharides from artichoke extract by a sequential process with microfiltration and nanofiltration membranes. J. Food Eng. 180, 120–128 (2016). doi:10.1016/j.jfoodeng.2016.02.018

    Article  Google Scholar 

  109. Ng, C.Y., Mohammad, A.W., Ng, L.Y., Jahim, J. M.: Sequential fractionation of high-added coconut products using membrane processes. J. Ind. Eng. Chem. 25, 162–167 (2015). doi:10.1016/j.jiec.2014.10.028

    Article  Google Scholar 

  110. Bellona, C., Drewes, J.E., Xu, P., Amy, G.: Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review. Water Res. 38(12), 2795–2809 (2004). doi:10.1016/j.watres.2004.03.034

    Article  Google Scholar 

  111. Strathmann, H., Giorno, L., Drioli, E.: An introduction to Membrane Science and Technology. Rome: Consiglio Nazionale delle Richerche (2006)

    Google Scholar 

  112. Brazinha, C., Crespo, J.G.: Valorization of food processing streams for obtaining extracts enriched in biologically active compounds. Integrated Membrane Operations: In the food Production. In: A. Cassano, & E. Drioli(Eds.). USA: De Gruyter (2014)

  113. Al-Amoudi, A., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4–28 (2007). doi:10.1016/j.memsci.2007.06.002

    Article  Google Scholar 

  114. Shi, X., Tal, G., Hankins, N.P., Gitis, V.: Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng.. 1, 121–138 (2014). doi:10.1016/j.jwpe.2014.04.003

    Article  Google Scholar 

  115. Strathmann, H.: Membrane separation processes: Current relevance and future opportunities. AlChE J. 47(5), 1077–1087 (2001). doi:10.1002/aic.690470514

    Article  Google Scholar 

  116. Buonomenna, M.G.: (2016). Smart composites membranes for advanced wastewater treatments. Smart Composite Coating and Membranes. In: Montemor, M.F. (ed.). UK: Elsevier, pp. 371–419. doi:10.1016/B978-1-78242-283-9.00014-2

    Chapter  Google Scholar 

  117. Asano, T., Burton, F.L., Leverenz, H.L., Tsuchihashi, R., Tchobanoglous G.: Water reuse: issues, Technologies and Applications. In Metcalf & Eddy (Eds.). New York: McGraw-Hill. (2007)

    Google Scholar 

  118. WHO- World Health Organization: Guidelines for drinking-water quality. WHO Library Cataloguing in Publication Data, Geneva (2011)

    Google Scholar 

  119. Ochando Pulido, J.M. (2016). A review on the use of membrane technology and fouling control for olive mill wastewater treatment. Sci. Total Environ. 563–564, 664–665. doi:10.1016/j.scitotenv.2015.09.151

    Article  Google Scholar 

  120. Goh, P.S., Matsuura, T., Ismail, A.F., Hilal, N.: Recent trends in membranes and membrane processes for desalination. Desalination. 391, 43–60 (2016). 10.1016/j.desal.2015.12.016

    Article  Google Scholar 

  121. Galanakis, C.M.: Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process. 91, 575–579 (2013). doi:10.1016/j.fbp.2013.01.004

    Article  Google Scholar 

  122. Castro-Muñoz, R., Fíla, V., Barragán-Huerta, B.E., Yáñez-Fernández, J., Piña-Rosas, J.A., Arboleda-Mejía J.: Processing of Xoconostle fruit (Opuntia joconostle) juice for improving its commercialization using membrane filtration. J. Food Process. Preserv. (2017). doi:10.1111/jfpp.13394

    Google Scholar 

Download references

Acknowledgements

R. Castro-Muñoz acknowledges the European Commission—Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program: Erasmus Mundus Doctorate in Membrane Engineering—EUDIME (FPA No 2011-0014, Edition V, http://eudime.unical.it). P.C. Denis expresses his gratitude to EACEA as well for his Erasmus Mundus Master Scholarship under the program: Erasmus Mundus International Master of Science in Environmental Technology and Engineering—IMETE (Course N0 2011-0172). This work was partially supported by the Operational Program Prague—Competitiveness (CZ.2.16/3.1.00/24501), “National Program of Sustainability“(NPU I LO1613) MSMT-43760/2015, Czech Science Foundation (Grant GACR No. 15-06479S) and financial support from specific university research (IGA 2017, MSMT No 20-SVV/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Castro-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Muñoz, R., Barragán-Huerta, B.E., Fíla, V. et al. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valor 9, 513–529 (2018). https://doi.org/10.1007/s12649-017-0003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0003-1

Keywords

Navigation