Skip to main content

Advertisement

Log in

Biogas from Residual Grass: A Territorial Approach for Sustainable Bioenergy Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Large amounts of residual grass originating from the management of landscape and natural areas are produced in Europe. This material, which is not competing for land use like energy crops, and is only partially recovered for animal feeding, can be profitably used for sustainable bioenergy production. In this study we demonstrated through a GIS based approach that this feedstock can be of some interest for the production of biogas in the Veneto Region, north east Italy, where more than 150 anaerobic digesters are in operation and feedstock availability can be sometime problematic. Specific field trials showed that costs for grass management are around 30 euros/ton while corresponding CO2 emission for grass handling (cutting, wrapping and harvesting) are 25 kg CO2/ton of grass processed. On the other hand, average biogas productions of some 500–600 m3 of biogas/ton of volatile solids (52–56% methane) should be expected from this residual material. Both treatment costs and biogas yields of residual grass are in line with similar data for some energy crops. The technical, environmental, and economic sustainability for the production of bioenergy through the proposed approach was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. EBA—European Biogas Association Report 2014 (2015)

  2. Singh, A., Smyth, B.M., Murphy, J.D.: A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew. Sustain. Energy Rev. 14(1), 277–288 (2010)

    Article  Google Scholar 

  3. Pick, D., Dieterich, M., Heintschel, S.: Biogas production potential from economically usable green waste. Sustainability. 4, 682–702 (2012)

    Article  Google Scholar 

  4. Meyer, A.K.P., Ehimen, E.A., Holm-Nielsen, J.B.: Bioenergy production from roadside grass: a case study of the feasibility of using roadside grass for biogas production in Denmark. Resour. Conserv. Recycl. 93, 124–133 (2014)

    Article  Google Scholar 

  5. Meyer, A.K.P., Raju, C.S., Kucheryavskiy, S., Holm-Nielsen, J.B.: The energy balance of utilising meadow grass in Danish biogas production. Resour. Conserv. Recycl. 104, 265–275 (2015)

    Article  Google Scholar 

  6. Tsapekos, P., Kougias, P.G., Angelidaki, I.: Anaerobic mono- and co-digestion of mechanically pretreated meadow grass for biogas production. Energy Fuels. 29(7), 4005–4010 (2015)

    Article  Google Scholar 

  7. Prochnow, A., Heiermann, M., Plöchl, M., Linke, B., Idler, C., Amon, T., Hobbs, P.J.: Bioenergy from permanent grassland—a review: 1. Biogas. Bioresour. Technol. 100(21), 4931–4944 (2009)

    Article  Google Scholar 

  8. Melts, I., Heinsoo, K.: Seasonal dynamics of bioenergy characteristics in grassland functional groups. Grass Forage Sci. 70(4), 571–581 (2015)

    Article  Google Scholar 

  9. Piepenschneider, M., Bühle, L., Hensgen, F., Wachendorf, M.: Energy recovery from grass of urban roadside verges by anaerobic digestion and combustion after pre-processing. Biomass Bioenergy 85, 278–287 (2016)

    Article  Google Scholar 

  10. Boscaro, D., Pezzuolo, A., Grigolato, S., Cavalli, R., Marinello, F., Sartori, L.: Preliminary analysis on mowing and harvesting grass along riverbanks for the supply of anaerobic digestion plants in north-eastern Italy. J. Agric. Eng. 465, 100–104 (2015)

    Google Scholar 

  11. Frigon, J.C., Roy, C., Guiot, S.R.: Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioprocess. Biosyst. Eng. 35, 341–349 (2012)

    Article  Google Scholar 

  12. Hidaka, T., Arai, S., Okamoto, S., Uchida, T.: Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces. Bioresour. Technol. 130, 667–672 (2013)

    Article  Google Scholar 

  13. Kosse, P., Lubken, M., Wichern, M.: Urban lignocellulosic biomass can significantly contribute to energy production in municipal wastewater treatment plants—a GIS-based approach for a metropolitan area. Biomass Bioenergy 81, 568–573 (2015)

    Article  Google Scholar 

  14. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59(5), 927–934 (2009)

    Article  Google Scholar 

  15. Sartori, L., Basso B., Bertocco M., Oliviero G: Energy use and economic evaluation of a three year crop rotation for conservation and organic farming in NE Italy. Biosyst. Eng. 91(2):245–256 (2005)

    Article  Google Scholar 

  16. Pezzuolo, A., Basso, B., Marinello, F., Sartori, L.: Using SALUS model for medium and long term simulations of energy efficiency in different tillage systems. Appl. Math. Sci. 8, 129–132 (2014)

    Google Scholar 

  17. Boscaro, D., Pezzuolo, A., Correale Santacroce, F., Marinello, F., Grigolato, S., Sartori, L.: Evaluation of different logistic scenarios in riverbanks grass harvesting for biogas plants feeding. Commun. Agric. Appl. Biol. Sci. (2017)

  18. Pezzuolo A., Boscaro D., Marinello F., Sartori L.: Alternative maize ensiling techniques for anaerobic digestion process: an economic and energetic comparison. Eng. Rural Dev. 15, 959–964 (2016)

    Google Scholar 

  19. Berglund, M., Börjesson, P.: Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30(3), 254–266 (2006)

    Article  Google Scholar 

  20. Pöschl, M., Ward, S., Owende, P.: Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 87(11), 3305–3321 (2010)

    Article  Google Scholar 

  21. Prade, T., Svensson, S.E., Mattsson, J. E.: Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 40, 36–52 (2012)

    Article  Google Scholar 

  22. Gerin, P.A., Vliegen F., Jossart J.-M.: Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour. Technol. 99(7), 2620–2627 (2008)

    Article  Google Scholar 

  23. Smyth, B.M., Murphy, J.D., O’Brien C.M.: What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew. Sustain. Energy Rev. 13(9), 2349–2360 (2009)

    Article  Google Scholar 

  24. Oludunsin, A., Voinov, A., Van Duren, I.: Assessing bioenergy potential in rural areas: a NEG-EROEI approach. Biomass Bioenergy 58, 350–364 (2013)

    Article  Google Scholar 

  25. Schattauer A., Abdoun E., Weiland P., Plochl M., Heiermann M.: Abundance of trace elements in demonstration biogas plants. Biosyst. Eng. 108, 57–65 (2011)

    Article  Google Scholar 

  26. Triolo, J.M., Pedersen, L., Qu, H., Sommer, S.G.: Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour. Technol. 125, 226–232 (2012)

    Article  Google Scholar 

  27. Micolucci, F., Gottardo, M., Cavinato, C., Pavan, P., Bolzonella, D.: Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag. 48, 227–235 (2016)

    Article  Google Scholar 

  28. Mansfield, S.D., Mooney, C., Saddler, J.N.: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15, 804–816 (1999)

    Article  Google Scholar 

  29. Dandikas, V., Heuwinkel, H., Lichti, F., Drewes, J.E., Koch, K.: Correlation between biogas yield and chemical composition of grassland plant species. Energy Fuels 29, 7221–7229 (2015)

    Article  Google Scholar 

  30. Nizami, A.-S., Orozco, A., Groom, E., Dieterich, B., Murphy, J.D.: How much gas can we get from grass? Appl. Energy 92, 783–790 (2012)

    Article  Google Scholar 

  31. Palmowski, L.M., Muller, J.A.: Anaerobic degradation of organic materials—significance of the substrate surface area. Water Sci. Technol. 47, 231–238 (2013)

    Google Scholar 

  32. Boscaro, D., Pezzuolo A., Grigolato S., Marinello F., Mattioli A., Bolzonella D., Sartori L. Evaluation of the energy efficiency and environmental impacts of grass harvested in riverbanks for anaerobic digestion plants feeding. J. Clean. Prod. (2017). doi:10.1016/j.jclepro.2017.02.060

    Google Scholar 

Download references

Acknowledgements

The EU funded project “GRass as a GReen Gas Resource: Energy from landscapes by promoting the use of grass residues as a renewable energy resource (GR3)”, IEE/12/046/SI2.645700, has financially supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bolzonella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattioli, A., Boscaro, D., Dalla Venezia, F. et al. Biogas from Residual Grass: A Territorial Approach for Sustainable Bioenergy Production. Waste Biomass Valor 8, 2747–2756 (2017). https://doi.org/10.1007/s12649-017-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0006-y

Keywords

Navigation