Skip to main content
Log in

A Comparison Study on the Production and Recovery of Lactic Acid by Fermenting Dairy By-Products with P. acidilactici and Lb. delbrüeckii spp. bulgaricus

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper provides a comparative study on the fermentative production of lactic acid (LA) by the novel Pediococcus acidilactici KTU05-7, previously isolated from rye sourdough, and the common dairy Lactobacillus delbrüeckii spp. bulgaricus using dairy by-products as a substrate. Lactic acid bacteria growth in different fermentation medium, β-d-galactosidase activity, lactose consumption, distribution of l(+)/d(−)-lactic acid isomers and LA purification using a system of membranes were also examined. The highest LA yield (1.9 g/g) was obtained fermenting the whey permeate for 24 h with the novel P. acidilactici. This strain also showed a better growth in whey permeate, a higher tolerance to low pH conditions and tended to produce mainly l(+)-lactic acid, compared to the standard L. bulgaricus. Furthermore, the proteolytic action of P. acidilactici simplified the membrane filtration procedure, and hindered the formation of protein aggregate in fermented broth as compared to L. bulgaricus. The findings of this research suggest that the Pediococcus acidilactici strain has a potential to improve the biotechnological production of LA from dairy industry waste and its recovery by membrane processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LA:

Lactic acid

LAB:

Lactic acid bacteria

Pa :

Pediococcus acidilactici

Lb :

Lactobacillus bulgaricus

WP:

Whey permeate

LLA:

l(+)-lactic acid

DLA:

d(−)-lactic acid

NF:

Nanofiltration

RO:

Reverse osmosis

References

  1. Hofvendahl, K., Hahn–Hägerdal, B.: Factors affecting the fermentative lactic acid production from renewable resources 1. Enzyme Microb. Technol. 26(2), 87–107 (2000)

    Article  Google Scholar 

  2. Panesar, P.S., Kennedy, J.F., Gandhi, D.N., Bunko, K.: Bioutilisation of whey for lactic acid production. Food Chem. 105(1), 1–14 (2007)

    Article  Google Scholar 

  3. Juodeikiene, G., Vidmantiene, D., Basinskiene, L., Cernauskas, D., Bartkiene, E., Cizeikiene, D.: Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis. Catal. Today. 239, 11–16 (2015)

    Article  Google Scholar 

  4. Suárez, E., Lobo, A., Alvarez, S., Riera, F., Álvarez, R.: Demineralization of whey and milk ultrafiltration permeate by means of nanofiltration. Desalination. 241(1), 272–280 (2009)

    Article  Google Scholar 

  5. Carvalho, F., Prazeres, A.R., Rivas, J.: Cheese whey wastewater: characterization and treatment. Sci. Total Environ. 445, 385–396 (2013)

    Article  Google Scholar 

  6. Wang, C., Li, Q., Wang, D., Xing, J.: Improving the lactic acid production of actinobacillus succinogenes by using a novel fermentation and separation integration system. Process Biochem. 49(8), 1245–1250 (2014)

    Article  Google Scholar 

  7. Garvie, E.I.: Bacterial lactate dehydrogenases. Microbiol. Rev. 44(1), 106–139 (1980)

    Google Scholar 

  8. Akoum, O., Jaffrin, M.Y., Ding, L.H., Frappart, M.: Treatment of dairy process waters using a vibrating filtration system and NF and RO membranes. J. Membr. Sci. 235(1), 111–122 (2004)

    Article  Google Scholar 

  9. Wojtyniak, B., Szaniawska, D.: Separation of lactic acid solutions from whey fermentation broth using zirconium (IV) hydrous oxide dynamically formed membranes. Pol. J. Environ. Stud. 24(3) (2015)

  10. Atra, R., Vatai, G., Bekassy-Molnar, E., Balint, A.: Investigation of ultra-and nanofiltration for utilization of whey protein and lactose. J. Food Eng. 67(3), 325–332 (2005)

    Article  Google Scholar 

  11. Dey, P., Linnanen, L., Pal, P.: Separation of lactic acid from fermentation broth by cross flow nanofiltration: membrane characterization and transport modelling. Desalination. 288, 47–57 (2012)

    Article  Google Scholar 

  12. Digaitiene, A., Hansen, ÅS., Juodeikiene, G., Eidukonyte, D., Josephsen, J.: Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against bacillus subtilis and fungi. J. Appl. Microbiol. 112(4), 732–742 (2012)

    Article  Google Scholar 

  13. Digaitiene, A., Hansen, A., Juodeikiene, G., Josephsen, J.: Microbial population in lithuanian spontaneous rye sourdoughs. Ekologia i Technika. 13(5), 193–198 (2005)

    Google Scholar 

  14. Ansari, S.A., Husain, Q.: Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-celite 545 immobilized Aspergillus oryzae β galactosidase. Food Bioprod. Process. 90(2), 351–359 (2012)

    Article  Google Scholar 

  15. Vasiljevic, T., Jelen, P.: Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innov. Food Sci. Emerg. Technol. 2(2), 75–85 (2001)  

    Article  Google Scholar 

  16. Gassem, M., Schmidt, K., Frank, J.: Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii ssp. bulgaricus. J. Food Sci. 62(1), 171–173 (1997)  

    Article  Google Scholar 

  17. Pescuma, M., Hébert, E.M., Mozzi, F., De Valdez, G.F.: Functional fermented whey-based beverage using lactic acid bacteria. Int. J. Food Microbiol. 141(1), 73–81 (2010)  

    Article  Google Scholar 

  18. Sanni, A., Morlon-Guyot, J., Guyot, J.: New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different nigerian traditional fermented foods. Int. J. Food Microbiol. 72(1), 53–62 (2002)  

    Article  Google Scholar 

  19. Komesu, A., de Oliveira, J.A.R., da Silva Martins, L.H., Maciel, M.R.W., Maciel Filho, R.: Lactic acid production to purification: a review. BioResources. 12(2), 4364–4383 (2017)  

    Google Scholar 

  20. Rogers, L.A., Whittier, E.O.: Limiting factors in the lactic fermentation. J. Bacteriol. 16(4), 211–229 (1928)  

    Google Scholar 

  21. Das, B., Roy, A.P., Bhattacharjee, S., Chakraborty, S., Bhattacharjee, C.: Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicol. Environ. Saf. 121, 244–252 (2015)

    Article  Google Scholar 

  22. Øyaas, J., Storrø, I., Levine, D.: Uptake of lactose and continuous lactic acid fermentation by entrapped non-growing Lactobacillus helveticus in whey permeate. Appl. Microbiol. Biotechnol. 46(3), 240–249 (1996)  

    Article  Google Scholar 

  23. Juodeikiene, G., Zadeike, D., Bartkiene, E., Klupsaite, D.: Application of acid tolerant pedioccocus strains for increasing the sustainability of lactic acid production from cheese whey. LWT-Food Sci. Technol. 72, 399–406 (2016)  

    Article  Google Scholar 

  24. Matijević, B., Lisak, K., Božanić, R., Tratnik, L.: Impact of enzymatic hydrolyzed lactose on fermentation and growth of probiotic bacteria in whey. Mljekarstvo. 61(2), 154 (2011)  

    Google Scholar 

  25. Narayanan, N., Roychoudhury, P.K., Srivastava, A.: l(+) lactic acid fermentation and its product polymerization. EJB. 7(2), 167–178 (2004)  

    Google Scholar 

  26. Severson, D.K., Barrett, C.L.: Lactobacillus delbrueckii ssp. bulgaricus strain and fermentation process for producing l-(+)-lactic acid. Biotechnol. Adv. 3(14), 382 (1996)  

    Google Scholar 

  27. Hofvendahl, K., Hahn-Hägerdal, B.: L-lactic acid production from whole wheat flour hydrolysate using strains of lactobacilli and lactococci. Enzyme Microb. Technol. 20(4), 301–307 (1997)  

    Article  Google Scholar 

  28. Bartkiene, E., Krungleviciute, V., Juodeikiene, G., Vidmantiene, D., Maknickiene, Z.: Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean. J. Sci. Food Agric. 95(6), 1336–1342 (2015)

    Article  Google Scholar 

  29. Panesar, P.S., Kennedy, J.F., Knill, C.J., Kosseva, M.: Production of l(+) lactic acid using Lactobacillus casei from whey. Braz. Arch. Biol. Technol. 53(1), 219–226 (2010)  

    Article  Google Scholar 

  30. Kashket, E.R.: Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Lett. 46(3), 233–244 (1987)  

    Article  Google Scholar 

  31. Zorn, H., Czermak, P., Lipinski, GvR.: Biotechnology of Food and Feed Additives, vol. 143. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43761-2  

    Book  Google Scholar 

  32. Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K.: Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 156(4), 286–301 (2011)  

    Article  Google Scholar 

  33. Datta, R., Henry, M.: Lactic acid: recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 81(7), 1119–1129 (2006)  

    Article  Google Scholar 

  34. Silalahi, S.H., Leiknes, T.: High frequency back-pulsing for fouling development control in ceramic microfiltration for treatment of produced water. Desalin. Water Treat. 28(1–3), 137–152 (2011)  

    Article  Google Scholar 

  35. Sondhi, R., Bhave, R.: Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. J. Membr. Sci. 186(1), 41–52 (2001)  

    Article  Google Scholar 

  36. Yorgun, M., Balcioglu, I.A., Saygin, O.: Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination. 229(1–3), 204–216 (2008)  

    Article  Google Scholar 

  37. Vourch, M., Balannec, B., Chaufer, B., Dorange, G.: Nanofiltration and reverse osmosis of model process waters fromthe dairy industry to produce water for reuse. Desalination. 172(3), 245–256 (2005)  

    Article  Google Scholar 

  38. Giorno, L., Chojnacka, K., Donato, L., Drioli, E.: Study of a cell-recycle membrane fermentor for the production of lactic acid by Lactobacillus bulgaricus. Ind. Eng. Chem. Res. 41(3), 433–440 (2002)  

    Article  Google Scholar 

  39. Gonzalez, M.I., Alvarez, S., Riera, F.A., Alvarez, R.: Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination. 228(1–3), 84–96 (2008)  

    Article  Google Scholar 

  40. Pal, P., Sikder, J., Roy, S., Giorno, L.: Process intensification in lactic acid production: a review of membrane based processes. Chem. Eng. Process. 48(11), 1549–1559 (2009)  

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (Grant Agreement Number 613589, SUSMILK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dovile Klupsaite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klupsaite, D., Juodeikiene, G., Arbones, E. et al. A Comparison Study on the Production and Recovery of Lactic Acid by Fermenting Dairy By-Products with P. acidilactici and Lb. delbrüeckii spp. bulgaricus. Waste Biomass Valor 10, 1519–1528 (2019). https://doi.org/10.1007/s12649-017-0171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0171-z

Keywords

Navigation