Skip to main content

Advertisement

Log in

Groundwater monitoring at a building site of the tidal flood protection system “MOSE” in the Lagoon of Venice, Italy

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To protect Venice against tidal flooding, the MOSE system (Experimental Electro-mechanic Module) has been under construction since 2003. This safeguarding system is composed of four batteries of mobile barriers at the Lagoon’s inlets (Lido, Malamocco, Chioggia), which will be lifted before the occurrence of exceptional high tides (>1.10 m above the mean sea level), isolating the Venetian Lagoon from the sea. The end of the construction work is foreseen by 2016. In this paper, the results of the groundwater monitoring at the building site of Punta Sabbioni at the Lido inlet are described. A large dewatered basin (tura), formerly occupied by the sea and close to the shoreline, was used for the precasting of the mobile barriers, and the impact of groundwater control was therefore monitored in the phreatic and shallow confined aquifers. Although a slurry wall barrier was excavated to isolate the tura, a drawdown cone in the confined aquifer was observed, extending to 1 km from the construction site. In contrast, the phreatic aquifer was only influenced by tides, rainfall and evapotranspiration, and the slurry wall of the tura had a positive effect of decreasing the groundwater salinity by limiting the seawater intrusion, as confirmed by the electrical conductivity profiles measured inside the piezometers. The monitoring activity was successful in assessing the impacts of the construction work on the aquifer system and in distinguishing them from the effects of natural driving forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Consortium for coordination of research activities concerning the Venice lagoon system.

  2. Tura is the ancient Venetian word to designate the bounded basins used for the wooden pole foundations of the palaces of Venice.

  3. ICPSM (Istituto Centro di Previsione e Segnalazione Maree) is the agency for the measurement and forecast of tides in the Venice Lagoon.

  4. ARPA Veneto is the regional environmental protection agency.

References

  • Attanayake PM, Waterman MK (2006) Identifying environmental impacts of underground construction. Hydrogeol J 14:1160–1170. doi:10.1007/s10040-006-0037-0

    Article  Google Scholar 

  • Bear J (1999) Seawater intrusion in coastal aquifers : concepts, methods, and practices. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory JM, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan AS (2007) Observations: oceanic climate change and sea level. In: IPCC (ed) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, p 387

    Google Scholar 

  • Bras RL, Harleman DRF, Rinaldo A, Rizzoli P (2001) Rescuing Venice from a watery grave. Science 291:2315–2316

    Article  Google Scholar 

  • Bringiotti M, Dossi M, Nicastro D (2008) Miscelazione profonda dei terreni. Metodi classici e tecnologie innovative-CSM by Bauer. Geofluid, Piacenza

    Google Scholar 

  • Carbognin L, Gambolati G, Ricceri G (1977) New trend in the subsidence of Venice. IAHS Symposium, Anaheim, pp 65–81

    Google Scholar 

  • Carbognin L, Marabini S, Tosi L (1995) Land subsidence and degradation of the Venice littoral zone, Italy. In: IAHS (ed) 5th international symposium on land subsidence. Den Haag, Netherlands, pp 391–402

    Google Scholar 

  • Casasso A, Di Molfetta A, Sethi R (2009) Monitoring plan of MOSE building sites (Venezia): the hydrogeologic situation around the building sites. Riunione Annuale CORILA, Venice, pp 217–226

    Google Scholar 

  • Cecconi G (1997) The Venice lagoon mobile barriers. Sea level rise and impact of barrier closures. Italian days of coastal engineering, Venice

    Google Scholar 

  • Cimino A, Cosentino C, Oieni A, Tranchina L (2008) A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environ Geol 55:1473–1482. doi:10.1007/s00254-007-1097-8

    Article  Google Scholar 

  • Cucco A, Umgiesser G (2006) Modeling the Venice lagoon residence time. Ecol Model 193:34–51. doi:10.1016/j.ecolmodel.2005.07.043

    Article  Google Scholar 

  • Da Lio C, Tosi L, Zambon G, Vianello A, Baldin G, Lorenzetti G, Manfè G, Teatini P (2013) Long-term groundwater dynamics in the coastal confined aquifers of Venice (Italy). Estuarine, Coast Shelf Sci 135:248–259. doi:10.1016/j.ecss.2013.10.021

    Article  Google Scholar 

  • Di Molfetta A, Sethi R (2012) Ingegneria degli acquiferi. Springer-Verlag Italia, Milan

    Book  Google Scholar 

  • Di Molfetta A, Sethi R, Delforno S (2005) Rapporto di Pianificazione Operativa. Area: Suolo. Macroattività: Livelli di falda. Studio B672 B/1. Attività di rilevamento per il monitoraggio degli effetti prodotti dalla costruzione delle opere alle bocche lagunari. Politecnico di Torino-DITAG and CORILA (Consortium for coordination of research activities concerning the Venice lagoon system). p 103

  • El Moujabber M, Samra BB, Darwish T, Atallah T (2006) Comparison of different indicators for groundwater contamination by seawater intrusion on the lebanese coast. Water Resour Manage 20:161–180. doi:10.1007/s11269-006-7376-4

    Article  Google Scholar 

  • Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29:556–562. doi:10.1111/j.1745-6584.1991.tb00547.x

    Article  Google Scholar 

  • Fice JL, Scotti A (1990) The flood-prevention scheme of Venice: experimental module. Water Environ J 4:70–77. doi:10.1111/j.1747-6593.1990.tb01559.x

    Article  Google Scholar 

  • Fontes JC, Bortolami G (1973) Subsidence of Venice Area during Past 40,000 Year. Nature 244:339–341

    Article  Google Scholar 

  • Gatto P, Carbognin L (1981) The Lagoon of Venice: natural environmental trend and man-induced modification. Bulletin des Sci Hydrologiques 26:379–391

    Article  Google Scholar 

  • Gerressen FW, Schoepf M, Stoetzer E, Fiorotto R (2008) Cutter soil mixing (CSM) on the MOSE project-Venice, Italy. Tiefbau 6:330–333

    Google Scholar 

  • Harleman DRF (2002) Saving Venice from the sea. The Pennsylvania State University-College of Engineering, University Park, PA

    Google Scholar 

  • Katznelson R (2004) Conductivity/salinity measurement principles and methods. The clean water team guidance compendium for watershed monitoring and assessment. Clean Water Team, Division of Water Quality, California State Water Resources Control Board (SWRCB), Sacramento, pp 1–9

    Google Scholar 

  • Lee J-Y, Song S-H (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52:1231–1242. doi:10.1007/s00254-006-0560-2

    Article  Google Scholar 

  • Li HL, Jiao JJ, Luk M, Cheung KY (2002) Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resour Res 38. doi:10.1029/2001wr000556

  • MOSE Venezia (2013) Activities for the safeguarding of Venice and its lagoon.

  • Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45:664–671. doi:10.1111/j.1745-6584.2007.00339.x

    Article  Google Scholar 

  • Powers JP, Corwin AB, Schmall PC, Kaeck WE (2007) Construction dewatering and groundwater control. New methods and applications. 3rd edn

  • Rapaglia J, Di Sipio E, Bokuniewicz H, Zuppi GM, Zaggia L, Galgaro A, Beck A (2010) Groundwater connections under a barrier beach: a case study in the Venice Lagoon. Cont Shelf Res 30:119–126. doi:10.1016/j.csr.2009.10.001

    Article  Google Scholar 

  • Rinaldo A, Nicotina L, Celegon EA, Beraldin F, Botter G, Carniello L, Cecconi G, Defina A, Settin T, Uccelli A, D’Alpaos L, Marani M (2008) Sea level rise, hydrologic runoff, and the flooding of Venice. Water Resour Res 44. doi:10.1029/2008wr007195

  • Song S-H, Zemansky G (2012) Vulnerability of groundwater systems with sea level rise in coastal aquifers, South Korea. Environ Earth Sci 65:1865–1876. doi:10.1007/s12665-011-1169-7

    Article  Google Scholar 

  • Song S-H, Zemansky G (2013) Groundwater level fluctuation in the Waimea Plains, New Zealand: changes in a coastal aquifer within the last 30 years. Environ Earth Sci 70:2167–2178. doi:10.1007/s12665-013-2359-2

    Article  Google Scholar 

  • Strozzi T, Teatini P, Tosi L (2009) TerraSAR-X reveals the impact of the mobile barrier works on Venice coastland stability. Remote Sens Environ 113:2682–2688. doi:10.1016/j.rse.2009.08.001

    Article  Google Scholar 

  • Taormina R, Chau K-w, Sethi R (2012) Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intell 25:1670–1676. doi:10.1016/j.engappai.2012.02.009

    Article  Google Scholar 

  • Teatini P, Tosi L, Strozzi T, Carbognin L, Wegmuller U, Rizzetto F (2005) Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens Environ 98:403–413. doi:10.1016/j.rse.2005.08.002

    Article  Google Scholar 

  • Tosi L, Teatini P, Carbognin L, Frankenfield J (2007) A new project to monitor land subsidence in the northern Venice coastland (Italy). Environ Geol 52:889–898. doi:10.1007/s00254-006-0530-8

    Article  Google Scholar 

  • Tosi L, Teatini P, Carbognin L, Brancolini G (2009) Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: the Venice coast, Italy. Tectonophysics 474:271–284. doi:10.1016/j.tecto.2009.02.026

    Article  Google Scholar 

  • Tosi L, Teatini P, Bincoletto L, Simonini P, Strozzi T (2012) Integrating geotechnical and interferometric SAR measurements for secondary compressibility characterization of coastal soils. Surv Geophys 33:907–926. doi:10.1007/s10712-012-9186-y

    Article  Google Scholar 

  • Wang J, Feng B, Yu H, Guo T, Yang G, Tang J (2013) Numerical study of dewatering in a large deep foundation pit. Environ Earth Sci 69:863–872. doi:10.1007/s12665-012-1972-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Pierpaolo Campostrini and Dr. Caterina Dabalà of CORILA (Consortium for coordination of research activities concerning the Venice lagoon system), the Ministero delle Infrastrutture e dei Trasporti-Magistrato alle Acque di Venezia (Ministry of Infrastructures and Transports-Venice Water Authority) for the permission to use the data of the monitoring program B.6.72 B/1–8 (Survey and monitoring activities of the effects of the construction works at the Lagoon inlets).

The authors gratefully acknowledge Silvia Delforno, Chiara Santi and Tommaso Baldarelli, who collaborated on this project at the early stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajandrea Sethi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casasso, A., Di Molfetta, A. & Sethi, R. Groundwater monitoring at a building site of the tidal flood protection system “MOSE” in the Lagoon of Venice, Italy. Environ Earth Sci 73, 2397–2408 (2015). https://doi.org/10.1007/s12665-014-3588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3588-8

Keywords

Navigation