Skip to main content

Advertisement

Log in

Long-term hydrological changes in northern Iberia (4.9–0.9 ky BP) from speleothem Mg/Ca ratios and cave monitoring (Ojo Guareña Karst Complex, Spain)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

An absolute-dated stalagmite from Kaite Cave (Ojo Guareña Karst Complex, N Spain) provides a nearly continuous, high-resolution record of a proxy of regional precipitation patterns through the 4.9–0.9 ka BP interval. This record is based on the Mg/Ca ratio of the calcite and its variation through the stalagmite stratigraphy, which is interpreted to be primarily driven by changes in precipitation amount. The calibration of the proxy is supported by the present-day monitoring carried out in the cave for the last 10 years, which reveals a robust inverse relationship between the inter-annual/inter-decadal variability of rainfall and the Mg concentration of dripwaters and precipitating speleothems. The record of paleoprecipitation, based on 2400 Mg/Ca measurements, shows strong variability at inter-annual to inter-decadal scales, and more subtle but significant changes at secular to millennial scales. This long-term paleohydrological evolution outlines five successive intervals with consistent trends, which are bounded by abrupt shifts in the regional precipitation. These shifts took place at 4.65, 4.2, 2.6, and 1.3 ka BP. Significantly, the intervals of maximum precipitation of the whole record (around 4.9–4.65, 2.6–2.45, and 1.3–1.1 ka BP) can be related with episodes of minimum solar activity and correlated with cold climatic events elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayalon A, Bar-Matthews M (2011) Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 21:163–171. doi:10.1177/0959683610384165

    Article  Google Scholar 

  • Baldini JUL, McDermott F, Fairchild IJ (2006) Spatial variability in cave drip water hydrochemistry: implications for stalagmite paleoclimate records. Chem Geol 235:390–404. doi:10.1016/j.chemgeo.2006.08.005

    Article  Google Scholar 

  • Bernal JP, Lachniet M, McCulloch M, Mortimer G, Morales P, Cienfuegos E (2011) A speleothem record of Holocene climate variability from southwestern Mexico. Quat Res 75:104–113. doi:10.1016/j.yqres.2010.09.002

    Article  Google Scholar 

  • Booth RK, Jackson ST, Forman SL, Kutzbach JE, Bettis EA III, Kreig J, Wright DK (2005) A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages. The Holocene 15:321–328. doi:10.1191/0959683605hl825ft

    Article  Google Scholar 

  • Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169:17–33. doi:10.1016/S0009-2541(99)00157-6

    Article  Google Scholar 

  • Confederación Hidrográfica del Ebro (2012) Evolución de la temperatura y la precipitación en la cuenca del Ebro. http://www.chebro.es. Accessed 14 Nov 2014

  • Cruz FW Jr, Burns SJ, Jercinovic M, Karmann I, Sharp WD, Vuille M (2007) Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim Cosmochim Acta 71:2250–2263. doi:10.1016/j.gca.2007.02.005

    Article  Google Scholar 

  • Cruz JA, Martín-Chivelet J, Marín-Roldán A, Turrero MJ, Edwards RL, Ortega AI, Cáceres JO (2015) Trace elements in speleothems as indicators of past climate and Karst hydrochemistry: a case study from Kaite Cave (N Spain). In: Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux JW (eds) Hydrogeological and environmental investigations in Karst systems. Environmental Earth Sciences, vol 1. Springer, Berlin, pp 569–577. doi:10.1007/978-3-642-17435-3_64

    Google Scholar 

  • Day CC, Henderson GM (2013) Controls on trace-element partitioning in cave-analogue calcite. Geochim Cosmochim Acta 120:612–627. doi:10.1016/j.gca.2013.05.044

    Article  Google Scholar 

  • deMenocal PB (2001) Cultural responses to climate change during the Late Holocene. Science 292:667–673. doi:10.1126/science.1059287

    Article  Google Scholar 

  • Dergachev VA, Raspopov OM, Vasiliev SS (2000) Long-term variability of solar activity during the Holocene. Proc. 1st Solar and Space Weather Euroconference, “The Solar Cycle and Terrestrial Climate”, Santa Cruz de Tenerife, Spain (ESA SP-463, December 2000)

  • Dorale J, Edwards RL, Alexander EC Jr, Shen C-C, Richards D, Cheng H (2004) Uranium-series dating of speleothems: current techniques, limits, and applications. In: Sasowsky I, Mylroie J (eds) Stud cave sediments. Springer, US, pp 177–197. doi:10.1007/978-1-4419-9118-8_10

    Chapter  Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1987) 238U234U230Th232Th systematics and the precise measurement of time over the past 5,00,000 years. Earth Planet Sc Lett 81:175–192. doi:10.1016/0012-821X(87)90154-3

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253. doi:10.1126/science.1066208

    Article  Google Scholar 

  • Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change. Quat Sci Rev 28:449–468. doi:10.1016/j.quascirev.2008.11.007

    Article  Google Scholar 

  • Fairchild IJ, Borsato A, Tooth AF, Frisia S, Hawkesworth CJ, Huang Y, McDermott F, Spiro B (2000) Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem Geol 166:255–269. doi:10.1016/S0009-2541(99)00216-8

    Article  Google Scholar 

  • Fortes FJ, Vadillo I, Stoll H, Jimenez-Sanchez M, Moreno A, Laserna JJ (2012) Spatial distribution of paleoclimatic proxies in stalagmite slabs using laser-induced breakdown spectroscopy. J Anal Atom Spectrom 27:868–873. doi:10.1039/c2ja10299d

    Article  Google Scholar 

  • Frisia S, Borsato A (2010) Karst. In: Alonso-Zarza AM, Tanner A (eds) Carbonates in continental settings, developments in sedimentology, Chap 6, vol 61. Elsevier, pp 269–318. doi:10.1016/S0070-4571(09)06106-8

  • Gascoyne M (1983) Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. J Hydrol 61:213–222. doi:10.1016/0022-1694(83)90249-4

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2006) PAST—PAlaeontological STatistics, ver. 1.58. December 7, 2006

  • Huang Y, Fairchild IJ (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim Cosmochim Acta 65:47–62. doi:10.1016/S0016-7037(00)00513-5

    Article  Google Scholar 

  • Jalut G, Esteban Amat A, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeogr Palaeocl 160:255–290. doi:10.1016/S0031-0182(00)00075-4

    Article  Google Scholar 

  • Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Int 200:4–18. doi:10.1016/j.quaint.2008.03.012

    Article  Google Scholar 

  • Johnson KR, Hu C, Belshaw NS, Henderson GM (2006) Seasonal trace-element and stable-isotope variations in a Chinese speleothem: the potential for high-resolution paleomonsoon reconstruction. Earth Planet Sci Lett 244:394–407. doi:10.1016/j.epsl.2006.01.064

    Article  Google Scholar 

  • Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geografiska Annaler Ser A Phys Geogr 92:339–351. doi:10.1111/j.1468-0459.2010.00399.x

    Article  Google Scholar 

  • Luetscher M, Hoffmann DL, Frisia S, Spötl C (2011) Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland. Earth Planet Sci Lett 302:95–106. doi:10.1016/j.epsl.2010.11.042

    Article  Google Scholar 

  • Marín-Roldán A, Cruz JA, Martín-Chivelet J, Turrero MJ, Ortega AI, Cáceres JO (2014) Evaluation of laser induced breakdown spectroscopy (LIBS) for detection of trace element variation through stalagmites: potential for paleoclimate series reconstruction. J Appl Las Spectrosc 1:7–12

    Google Scholar 

  • Martín-Chivelet J, Muñoz-García MB, Edwards RL, Turrero MJ, Ortega AI (2011) Land surface temperature changes in Northern Iberia since 4000 years BP, based on δ13C of speleothems. Glob Planet Chang 77:1–12. doi:10.1016/j.gloplacha.2011.02.002

    Article  Google Scholar 

  • Martin-Puertas C, Matthes K, Brauer A, Muscheler R, Hansen F, Petrick C, Aldahan A, Possnert G, van Geel B (2012) Regional atmospheric circulation shifts induced by a grand solar minimum. Nat Geosci 5:397–401. doi:10.1038/ngeo1460

    Article  Google Scholar 

  • Nielsen LC, De Yoreo JJ, DePaolo DJ (2013) General model for calcite growth kinetics in the presence of impurity ions. Geochim Cosmochim Acta 115:100–114. doi:10.1016/j.gca.2013.04.001

    Article  Google Scholar 

  • Scholz D, Hoffmann DL (2011) StalAge—an algorithm designed for construction of speleothem age models. Quat Geochronol 6:369–382. doi:10.1016/j.quageo.2011.02.002

    Article  Google Scholar 

  • Shen G, Wang W, Wang Q, Zhao J, Collerson K, Zhou C, Tobias PV (2002) U-series dating of Liujiang hominid site in Guangxi, Southern China. J Hum Evol 43:817–829. doi:10.1006/jhev.2002.0601

    Article  Google Scholar 

  • Sinclair DJ, Banner JL, Taylor FW, Partin J, Jenson J, Mylroie J, Goddard E, Quinn T, Jocson J, Miklavič B (2012) Magnesium and strontium systematics in tropical speleothems from the Western Pacific. Chem Geol 294–295:1–17. doi:10.1016/j.chemgeo.2011.10.008

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. doi:10.1029/2009gl040142

    Article  Google Scholar 

  • Swindles GT, Plunkett G, Roe HM (2007) A delayed climatic response to solar forcing at 2800 cal. BP: multiproxy evidence from three Irish peatlands. Holocene 17:177–182. doi:10.1177/0959683607075830

    Article  Google Scholar 

  • Tooth AF, Fairchild IJ (2003) Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. J Hydrol 273:51–68. doi:10.1016/S0022-1694(02)00349-9

    Article  Google Scholar 

  • Treble P, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216:141–153. doi:10.1016/S0012-821X(03)00504-1

    Article  Google Scholar 

  • Tremaine DM, Froelich PN (2013) Speleothem trace element signatures: a hydrologic geochemical study of modern cave dripwaters and farmed calcite. Geochim Cosmochim Acta 121:522–545. doi:10.1016/j.gca.2013.07.026

    Article  Google Scholar 

  • Triantaphyllou MV, Gogou A, Bouloubassi I, Dimiza M, Kouli K, Rousakis G, Kotthoff U, Emeis KC, Papanikolaou M, Athanasiou M, Parinos C, Ioakim C, Lykousis V (2014) Evidence for a warm and humid Mid-Holocene episode in the Aegean and northern Levantine Seas (Greece, NE Mediterranean). Reg Environ Chang 14:1697–1712. doi:10.1007/s10113-013-0495-6

    Article  Google Scholar 

  • Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent Positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80. doi:10.1126/science.1166349

    Article  Google Scholar 

  • Turrero MJ, Garralón A, Martín-Chivelet J, Gómez P, Sánchez L, Quejido A, Ortega AI, Martín-Merino MA (2004) Seasonal changes in the chemistry of drip waters in Kaite Cave (N Spain). In: Wanty RB, Seal II RS (eds) Water–Rock interaction, vol 11. Balkema Publishers, London, pp 1407–1410

    Google Scholar 

  • Turrero MJ, Garralón A, Gómez P, Sánchez L, Martín-Chivelet J, Ortega AI (2007) Geochemical evolution of drip-water and present-growing calcite at Kaite Cave (N Spain). In: Wang YX, Bullen TD (eds) Water-Rock Interaction, vol 12. Balkema Publishers, Rotterdam, pp 1187–1190

    Google Scholar 

  • Turrero MJ, Garralón A, Sánchez L, Ortega AI, Martín-Chivelet J, Gómez P, Escribano A (2015) Variations in trace elements of drip waters in Kaite Cave (N Spain): significance in terms of present and past processes in the Karst system. In: Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux JW (eds) Hydrogeological and environmental investigations in Karst systems. Environmental Earth Sciences, vol 1. Springer, Berlin, pp 579–586. doi:10.1007/978-3-642-17435-3_65

    Google Scholar 

  • Vadillo JM, Vadillo I, Carrasco F, Laserna JJ (1998) Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. Fresenius J Anal Chem 361:119–123. doi:10.1007/s002160050846

    Article  Google Scholar 

  • Vasiliev SS, Dergachev VA (2002) The ~2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years. Ann Geophys 20(1):115–120. doi:10.5194/angeo-20-115-2002

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308:854–857. doi:10.1126/science.1106296

    Article  Google Scholar 

  • Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30:3109–3123. doi:10.1016/j.quascirev.2011.07.010

    Article  Google Scholar 

  • Wanner H, Mercolli L, Grosjean M, Ritz SP (2015) Holocene climate variability and change; a data-based review. J Geol Soc 172:254–263. doi:10.1144/jgs2013-101

    Article  Google Scholar 

  • Weiss H, Courty M-A, Wetterstrom W, Guichard F, Senior L, Meadow R, Curnow A (1993) The genesis and collapse of third Millennium North mesopotamian civilization. Science 261:995–1004. doi:10.1126/science.261.5124.995

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the invitation to contribute to this special issue by the invited editors, and the comments and suggestions by the two anonymous referees. We acknowledge the contribution to research projects CGL2010-21499-BTE and CGL2013-43257-R of the Spanish R + D National Program (MINECO) and research groups “Paleoclimatology and Global Change” and “Laser Induced Breakdown Spectroscopy (LIBS)” from the UCM (Spain). We thank the facilities and permissions given by the Junta de Castilla y León (Spain) for accessing and working in the Ojo Guareña Natural Monument. The collaboration of the Grupo Espeleológico Edelweiss (Exma. Dip. Prov. Burgos) is also greatly acknowledged. Thanks are extended to S. Moncayo and S. Manzoor for their help and advice in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martín-Chivelet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, J.A., Turrero, M.J., Cáceres, J.O. et al. Long-term hydrological changes in northern Iberia (4.9–0.9 ky BP) from speleothem Mg/Ca ratios and cave monitoring (Ojo Guareña Karst Complex, Spain). Environ Earth Sci 74, 7741–7753 (2015). https://doi.org/10.1007/s12665-015-4687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4687-x

Keywords

Navigation