Skip to main content
Log in

Joint interpretation of the hydrochemistry of two neighbouring basins by N-way multivariate methods

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The objective of this work is to compare the chemical composition and the spatial and temporal variabilities of groundwater in two basins, the Langueyú and Del Azul creeks basins, located in the Pampean plain, Buenos Aires province (Argentina). The Pampean plain is the most productive region in Argentina, agriculture and livestock being the main economic activities. Groundwater is the principal water resource in the region, with a strong and growing demand for human supply and for agriculture and industrial activities. Several sampling campaigns were carried out on shallow wells of the two studied basins along a period of 3 years (2010–2013) to identify seasonal variations. Electrical conductivity, pH, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium and potassium were determined following standard methods. For hydrochemical interpretation, descriptive statistical analyses, matrix augmentation principal component analysis, MA-PCA, and multidimensional principal component analysis, N-PCA (Parafac and Tucker3 models), were applied to the hydrochemical datasets from both basins. Three main hydrochemical processes have been identified in both basins: saline enrichment in the groundwater flow direction caused by dissolution of carbonates; exchange of calcium and magnesium by sodium in the same direction, and located areas of nitrate pollution. The paper shows that N-PCA is a good tool to deepen in the understanding of the hydrochemical features of groundwater from two neighbour basins, simplifying the analysis of large amounts of data, as well as establishing relations between the compared basins. Therefore the work is considered an interesting contribution to the study of groundwater resources with a regional scope. This knowledge is essential in basins with high socio-economic interests it causes a direct impact on resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52:1–4

    Article  Google Scholar 

  • APHA (American Public Health Association) (2005) Standard methods for the examination of water & wastewater. APHA, Washington, DC

    Google Scholar 

  • Bacon DH, Dai Z, Zheng L (2014) Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer. Energy Proc 63:4684–4707

    Article  Google Scholar 

  • Barranquero R (2009) Análisis hidrogeológico y evaluación de cargas contaminantes en la cuenca del arroyo Langueyú. Msc Thesis, Universidad Nacional de La Pampa

  • Barranquero R (2014) Análisis y evaluación del sistema hidrogeológico ambiental en la cuenca del arroyo Langueyú, Tandil, Buenos Aires. PhD Thesis, Universidad Nacional de Córdoba

  • Barranquero R, Varni M, Ruiz de Galarreta A, Quiroga M, Landa R (2013) Assessment of the hydrochemical characteristics of the Langueyú creek basin applying multivariate statistical analysis. J Argent Chem Soc 100:9–24

    Google Scholar 

  • Barranquero R, Pardo R, Varni M, Ruiz de Galarreta A, Vega M (2014) Modelling of the groundwater hydrological behaviour of the Langueyú creek basin by using N-way multivariate methods. Hydrol Process 28:4743–4755

    Article  Google Scholar 

  • Bro R (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38:149–201

    Article  Google Scholar 

  • Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365:335–345

    Article  Google Scholar 

  • Cid FD, Antón RI, Pardo R, Vega M, Caviedes-Vidal E (2011) Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina. Anal Chim Acta 705:243–252

    Article  Google Scholar 

  • Custodio E, Llamas M (1983) Hidrología Subterránea. Barcelona, España

  • Dai Z, Samper J (2006) Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J Hydrol 327:447–461

    Article  Google Scholar 

  • Dai Z, Wolfsberg A, Reimus P, Deng H, Kwicklis E, Ding M, Ware D, Ye M (2012) Identification of sorption processes and parameters for radionuclide transport in fractured rock. J Hydrol 414–415:516–526

    Google Scholar 

  • Dai Z, Keating E, Bacon D, Viswanathan H, Stauffer P, Jordan A, Pawar R (2014) Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site. Sci Rep 4:4006

    Google Scholar 

  • Faber N, Bro R, Hopke PK (2003) Recent developments in candecomp/parafac algorithms: a critical review. Chemom Intell Lab Syst 65:119–137

    Article  Google Scholar 

  • Galego-Fernandes P, Carreira P, Oliveira Da Silva M (2008) Anthropogenic sources of contamination recognition—Sines coastal aquifer (SW Portugal). J Geochem Explor 98:1–14

    Article  Google Scholar 

  • Giussani B, Monticelli D, Gambillara R, Pozzi A, Dossi C (2008) Three-way principal component analysis of chemical data from Lake Como watershed. Microchem J 88:160–166

    Article  Google Scholar 

  • Henrion R (1994) N-way principal component analysis theory, algorithms and applications. Chemom Intell Lab Syst 25:1–23

    Article  Google Scholar 

  • Hernández M, Giaconi LM, González N (2002) Línea de base ambiental para las aguas subterráneas y superficiales en el área minera de Tandilia, Buenos Aires, Argentina. In: Bocanegra E, Martínez D, Massone H (eds) Groundwater and human development. A A Balkema Publishers, Mar del Plata, pp 336–343

    Google Scholar 

  • INDEC (2010) http://www.censo2010.indec.gov.ar/resultadosdefinitivos.asp. Accessed 1 Aug 2014

  • Jayalakshmi B, Ramachandramoorthy T, Paulraj A (2014) Statistical interpretation on seasonal variations of groundwater quality in Ramanathapuram coastal tract, Tamil Nadu, India. Environ Earth Sci 72:1271–1278

    Article  Google Scholar 

  • Leardi R, Armanino C, Lanteri S, Alberotanza L (2000) Three-mode principal component analysis of monitoring data from Venice lagoon. J Chemometr 14:187–195

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosistemas y Bienestar Humano: Informe de Síntesis. World Resources Institute, Washington, DC

  • Miretzky P, Conzonno V, Fernández Cirelli A (2001) Geochemical mechanism controlling pampasic ponds hydrochemistry Salado River drainage basin, Argentina. RBRH 6(4):29–39

    Google Scholar 

  • Mohammadi Z (2009) Assessing hydrochemical evolution of groundwater in limestone terrain via principal component analysis. Environ Earth Sci 59:429–439

    Article  Google Scholar 

  • Nosrati K, Van Den Eeckhaut M (2012) Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environ Earth Sci 65:331–344

    Article  Google Scholar 

  • Pardo R, Vega DL, Cazurro C, Carretero C (2008) Modelling of chemical fractionation patterns of metals in soils by two-way and three-way principal component analysis. Anal Chim Acta 606:26–36

    Article  Google Scholar 

  • Pazand K, Pazand K (2014) Hydrogeochemical investigation using multivariate analytical methods in Esfadan basin, eastern Iran. Environ Earth Sci 72:483–489

    Article  Google Scholar 

  • Pere-Trepat E, Ginebreda A, Tauler R (2007) Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river waters in Catalonia. Chemom Intell Lab Syst 88:69–83

    Article  Google Scholar 

  • Pulido Bosch A (2007) Nociones de hidrogeología para ambientólogos. Universidad de Almería, Almería

    Google Scholar 

  • Quiroz-Londoño OM, Martínez DE, Dapeña C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J 16(6):1113–1127

    Article  Google Scholar 

  • Ramesh-Kumar RA, Riyazuddin P (2008) Application of chemometric techniques in the assessment of groundwater pollution in a suburban area of Chennai city, India. Curr Sci India 94(8):25

    Google Scholar 

  • Reis MM, Reis MG, Luz CC, Bastos WR, Yamashita M (2010) Aplicação do modeloTucker-3 para a análise da biodegradação de diesel. Qui Nova 33:1464–1470

    Article  Google Scholar 

  • Ruiz de Galarreta A (2006) Geohidrología y balance hidrológico de la zona no saturada en la cuenca superior del arroyo Tandileofú, provincia de Buenos Aires. PhD Thesis, Universidad Nacional de La Plata

  • Ruiz de Galarreta A, Banda Noriega R (2005) Geohidrología y evaluación de nitratos del Partido de Tandil, Buenos Aires, Argentina. In: Actas del IV Congreso Argentino de Hidrogeología y II Seminario Hispano-Latinoamericano sobre temas actuales de la Hidrología Subterránea, Córdoba, pp 99–108

  • Sala JM, Rojo A, Martín E, Ulibarrena J (1981) Investigaciones geohidrológicas de la cuenca de Tandil y su zona de influencia. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata

    Google Scholar 

  • Sala JM, Kruse E, Aguglino R (1987) Investigación hidrológica de la Cuenca del Arroyo Azul, Provincia de Buenos Aires. 37, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata

  • Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis TH (2003) Assessment of the surface water quality in northern Greece. Water Res 37:4119–4124

    Article  Google Scholar 

  • Singaraja C, Chidambaram S, Prasanna MV, Thivya C, Thilagavathi R (2013) Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu. Environ Earth Sci, India. doi:10.1007/s12665-013-2453-5

    Google Scholar 

  • Singh KP, Malik A, Moham D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38:3980–3992

    Article  Google Scholar 

  • Singh KP, Malik A, Sinha S, Mohan D, Singh VK (2007) Exploring groundwater hydrochemistry of alluvial aquifers using multi-way modelling. Anal Chim Acta 596:171–182

    Article  Google Scholar 

  • Smilde A, Bro R, Geladi P (2004) Multi-way analysis with applications in the chemical sciences. Wiley, England

    Book  Google Scholar 

  • Teruggi M, Kilmurray J (1975) Tandilia. Relatorio Geología Provincia de Buenos Aires. VI Congreso Geológico Argentino, Buenos Aires, pp 55–77

    Google Scholar 

  • Thomas J, Sabu J, Thrivikramji KP (2015) Discriminant analysis for characterization of hydrochemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India. Environ Monit Assess 187:365. doi:10.1007/s10661-015-4589-0

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. 10, Laboratory of Climatology, New Jersey

  • Varni M (2013) Application of several methodologies to estimate groundwater recharge in the Pampeano aquifer, Argentina. Water Technol Sci 4(3):63–85

    Google Scholar 

  • Varni M, Usunoff E (1999) Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeol J 7(2):180–187

    Article  Google Scholar 

  • Varni M, Comas R, Weinzettel P, Dietrich S (2013) Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain. Hydrol Sci J, Argentina. doi:10.1080/02626667.2013.833663

    Google Scholar 

  • Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592

    Article  Google Scholar 

  • Xu J, Chen Y, Li W, Zhang L, Hong Y, Bi X, Yang Y (2012) Statistical analysis of groundwater chemistry of the Tarim River lower reaches, Northwest China. Environ Earth Sci 65:1807–1820

    Article  Google Scholar 

  • Yrigoyen M (1975) Geología del Subsuelo y Plataforma Continental. In: Relatorio Geología Provincia de Buenos Aires. VI Congreso Geológico Argentino. CONI S.A.C.I.F.I, Bahía Blanca, pp 139–168

  • Zabala ME (2013) El origen de la composición química del acuífero freático en la cuenca del arroyo del Azul. PhD Thesis, Universidad Nacional de Córdoba

  • Zabala ME, Manzano M, Vives L (2015) The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina. Sci Total Environ 518–519:168–188

    Article  Google Scholar 

  • Zárate M, Mehl A (2010) Geología y geomorfología de la cuenca del arroyo del Azul, provincia de Buenos Aires, Argentina. In: I Congreso Internacional de Hidrología de Llanuras. Azul, Buenos Aires, pp 65–78

Download references

Acknowledgments

Rosario Soledad Barranquero and María Emilia Zabala participate in this project thanks to the support of CONICET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Soledad Barranquero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barranquero, R.S., Varni, M.R., Pardo, R. et al. Joint interpretation of the hydrochemistry of two neighbouring basins by N-way multivariate methods. Environ Earth Sci 75, 335 (2016). https://doi.org/10.1007/s12665-015-5142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5142-8

Keywords

Navigation