Skip to main content

Advertisement

Log in

Modelling the impacts of wildfires on runoff at the river basin ecological scale in a changing Mediterranean environment

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study focuses on the calibration and evaluation of MIKE BASIN/NAM model to simulate and manage the water resources on the Corgo River Basin (CRB) and assess the impacts of wildfires in water quantity. This study includes: (a) a description of the CRB from the geological, climatological and land use point of view; (b) an assessment of the major changes in CRB settings observed in recent years; and, (c) report the influence of wildfires on runoff. NAM parameters were automatically calibrated by comparing model runoff estimates with observed time series to maximise the Nash–Sutcliffe coefficient (NS). Obtained results during calibration (NS = 0.82, R 2 = 0.83) and validation processes (NS = 0.84, R 2 = 0.87) confirms the ability of MIKE BASIN/NAM to simulate the runoff variability at different scales. In the last decades, the CRB experienced a significant precipitation decrease at annual (−18 mm/year) and seasonal scale (−7 mm/year in winter and spring), substantial changes in land use and land cover (e.g., −30 % of forests and +170 % of urban areas) and frequent wildfires (1215 ha/year). The influence of wildfires is noticeable in runoff simulations with higher runoff peaks after heavy precipitation, lower runoff during dry periods and an average (maximum) increase in daily runoff of 5 % (20 %) during the validation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alencoão AMP, Pacheco FAL (2006) Infiltration in the Corgo River Basin (northern Portugal): coupling water balances with rainfall–runoff regressions on a monthly basis. Hydrol Sci J 51:989–1005

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, p 300

    Google Scholar 

  • Amraoui M, Pereira MG, DaCamara CC, Calado TJ (2015) Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Sci Total Environ 524:32–39

    Article  Google Scholar 

  • Andersen J, Refsgaard JC, Jensen KH (2001) Distributed hydrological modelling of the Senegal River basin—model construction and validation. J Hydrol 247:200–214

    Article  Google Scholar 

  • Bangash RF, Passuello A, Hammond M, Schuhmacher M (2012) Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin. Sci Total Environ 440:60–71

    Article  Google Scholar 

  • Candela L, Tamoh K, Olivares G, Gomez M (2012) Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Sci Total Environ 440:253–260

    Article  Google Scholar 

  • CCDR-N (2014) North Regional Coordination and Development Commission

  • Cerdà A, Doerr SH (2010) The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology 3:392–401

    Article  Google Scholar 

  • Charalampos D, Pantazis G, Dimitris P, Dimitris P (2012) Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini. J Environ Manag 94:132–143

    Article  Google Scholar 

  • Chen C, Meselhe E, Waldon M (2012) Assessment of mineral concentration impacts from pumped stormwater on an Everglades Wetland, Florida, USA—using a spatially-explicit model. J Hydrol 452:25–39

    Article  Google Scholar 

  • Chin DA, Mazumdar A, Roy PK (2000) Water-resources engineering, vol 12. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Coelho CdOA, Ferreira AJD, Boulet A-K, Keizer JJ (2004) Overland flow generation processes, erosion yields and solute loss following different intensity fires. Q J Eng Geol Hydrogeol 37:233–240

    Article  Google Scholar 

  • Cosandey C et al (2005) The hydrological impact of the Mediterranean forest: a review of French research. J Hydrol 301:235–249

    Article  Google Scholar 

  • Dechmi F, Burguete J, Skhiri A (2012) SWAT application in intensive irrigation systems: model modification, calibration and validation. J Hydrol 470:227–238

    Article  Google Scholar 

  • DHI (2008) Mike hydro basin: a multipurpose, map based decision support tool for integrated river basin analysis, planning and management—user guide. Water Environ, Danish Hydraulic Institute Hørsholm, Denmark

    Google Scholar 

  • Diogo V, Koomen E (2010) Explaining land-use change in Portugal 1990–2000. In: 13th AGILE international conference on Geographic Information Science, pp 1–11

  • Directive WF (2000) 60/EC European Communities Official Journal L 327:22.12

  • Dirks K, Hay J, Stow C, Harris D (1998) High-resolution studies of rainfall on Norfolk Island. Part II: Interpolation of rainfall data. J Hydrol 208:187–193

    Article  Google Scholar 

  • Doerr SH, Shakesby RA, MacDonald LH (2009) Soil water repellency: a key factor in post-fire erosion fire effects on soils and restoration strategies 5

  • Duncan M, Austin B, Fabry F, Austin G (1993) The effect of gauge sampling density on the accuracy of streamflow prediction for rural catchments. J Hydrol 142:445–476

    Article  Google Scholar 

  • EEA (2014) European Environment Agency

  • Ferreira A, Coelho C, Boulet A, Leighton-Boyce G, Keizer J, Ritsema C (2005a) Influence of burning intensity on water repellency and hydrological processes at forest and shrub sites in Portugal. Soil Res 43:327–336

    Article  Google Scholar 

  • Ferreira A, Coelho C, Boulet A, Lopes F (2005b) Temporal patterns of solute loss following wildfires in Central Portugal. Int J Wildland Fire 14:401–412

    Article  Google Scholar 

  • Ferreira A, Coelho CdO, Ritsema C, Boulet A, Keizer J (2008) Soil and water degradation processes in burned areas: lessons learned from a nested approach. Catena 74:273–285

    Article  Google Scholar 

  • Freitas L, Pereira MG, Caramelo L, Mendes M, Nunes LF (2013) Homogeneity of monthly air temperature in Portugal with HOMER and MASH. Idojaras 117:69–90

    Google Scholar 

  • González-Pelayo O, Andreu V, Campo J, Gimeno-García E, Rubio JL (2006) Hydrological properties of a Mediterranean soil burned with different fire intensities. Catena 68:186–193

    Article  Google Scholar 

  • Herron N, Croke B (2009) Including the influence of groundwater exchanges in a lumped rainfall-runoff model. Math Comput Simul 79:2689–2700

    Article  Google Scholar 

  • ICNF (2014) Instituto de Conservação da Natureza e das Florestas

  • Inbar M, Tamir M, Wittenberg L (1998) Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology 24:17–33

    Article  Google Scholar 

  • Ireson A, Makropoulos C, Maksimovic C (2006) Water resources modelling under data scarcity: coupling MIKE BASIN and ASM groundwater model. Water Resour Manag 20:567–590

    Article  Google Scholar 

  • Jeyakumar P, Müller K, Deurer M, van den Dijssel C, Mason K, Le Mire G, Clothier B (2014) A novel approach to quantify the impact of soil water repellency on run-off and solute loss. Geoderma 221:121–130

    Article  Google Scholar 

  • Liu H-L, Chen X, Bao A-M, Wang L (2007) Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed. J Hydrol 347:448–459

    Article  Google Scholar 

  • López R, Batalla R (2001) Análisis del comportamiento hidrológico de la cuenca mediterránea de Arbúcies antes y después de un incendio forestal. In: Congresos Forestales

  • Madsen H, Wilson G, Ammentorp HC (2002) Comparison of different automated strategies for calibration of rainfall-runoff models. J Hydrol 261:48–59

    Article  Google Scholar 

  • Makungo R, Odiyo J, Ndiritu J, Mwaka B (2010) Rainfall–runoff modelling approach for ungauged catchments: a case study of Nzhelele River sub-quaternary catchment. Phys Chem Earth Parts A/B/C 35:596–607

    Article  Google Scholar 

  • Malvar M, Prats S, Nunes J, Keizer J (2011) Post-fire overland flow generation and inter-rill erosion under simulated rainfall in two eucalypt stands in north-central Portugal. Environ Res 111:222–236

    Article  Google Scholar 

  • Mayor A, Bautista S, Llovet J, Bellot J (2007) Post-fire hydrological and erosional responses of a Mediterranean landscpe: seven years of catchment-scale dynamics. Catena 71:68–75

    Article  Google Scholar 

  • McMichael CE, Hope AS, Loaiciga HA (2006) Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. J Hydrol 317:307–324

    Article  Google Scholar 

  • Moriasi D, Arnold J, Van Liew M, Bingner R, Harmel R, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Asabe 50:885–900

    Article  Google Scholar 

  • Nash J, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nayak P, Venkatesh B, Krishna B, Jain SK (2013) Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. J Hydrol 493:57–67

    Article  Google Scholar 

  • Odiyo J, Phangisa J, Makungo R (2012) Rainfall–runoff modelling for estimating Latonyanda River flow contributions to Luvuvhu River downstream of Albasini Dam. Phys Chem Earth 50:5–13

    Article  Google Scholar 

  • Parry ML (2007) Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Dis 4:439–473

    Article  Google Scholar 

  • Pereira MG, Trigo RM, da Camara CC, Pereira JM, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agric For Meteorol 129:11–25

    Article  Google Scholar 

  • Pereira M, Caramelo L, Gouveia C, Gomes-Laranjo J, Magalhães M (2011a) Assessment of weather-related risk on chestnut productivity. Nat Hazard Earth Syst Sci 11:2729–2739

    Article  Google Scholar 

  • Pereira M, Malamud B, Trigo R, Alves P (2011b) The history and characteristics of the 1980–2005 Portuguese rural fire database. Nat Hazards Earth Syst Sci 11:3343–3358

    Article  Google Scholar 

  • Pereira M, Malamud B, Trigo R, Alves P (2011c) The history and characteristics of the 1980–2005 Portuguese rural fire database. Nat Hazards Earth Syst Sci 11:3343–3358

    Article  Google Scholar 

  • Pereira MG, Calado TJ, DaCamara CC, Calheiros T (2013a) Effects of regional climate change on rural fires in Portugal. Clim Res 57:187–200

    Article  Google Scholar 

  • Pereira MG, Calado TJ, DaCamara CC, Calheiros T (2013b) Effects of regional climate change on rural fires in Portugal. Clim Change 57:187–200

    Google Scholar 

  • Pereira MG, Aranha J, Amraoui M (2014a) Land cover fire proneness in Europe. For Syst 23:598–610. doi:10.5424/fs/2014233-06115

    Google Scholar 

  • Pereira MJMG, Fernandes LFS, Macário EMB, Gaspar SM, Pinto JG (2014b) Climate change impacts in the design of drainage systems: case study of portugal. J Irrig Drain Eng

  • Pereira MG, Caramelo L, Orozco CV, Costa R, Tonini M (2015) Space-time clustering analysis performance of an aggregated dataset: the case of wildfires in Portugal. Environ Model Softw 72:239–249. doi:10.1016/j.envsoft.2015.05.016

    Article  Google Scholar 

  • Pierson FB, Robichaud PR, Spaeth KE (2001) Spatial and temporal effects of wildfire on the hydrology of a steep rangeland watershed hydrological processes 15:2905–2916

    Google Scholar 

  • Pinto NLS, Holtz ACT, Martins JA, Gomide FLS (1976) Hidrologia Básica. São Paulo, Edgard Blucher, p 278

  • Prats SA, Malvar MC, Vieira DCS, MacDonald L, Keizer JJ (2013) Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degrad Develop

  • Reis A, Parker A, Alencoão A (2014) Storage and origin of metals in active stream sediments from mountainous rivers: a case study in the River Douro basin (North Portugal). Appl Geochem 44:69–79

    Article  Google Scholar 

  • Ronfort C et al (2011) Methodology for land use change scenario assessment for runoff impacts: a case study in a north-western European Loess belt region (Pays de Caux, France). Catena 86:36–48

    Article  Google Scholar 

  • Safari A, De Smedt F (2008) Streamflow simulation using radar-based precipitation applied to the Illinois River basin in Oklahoma, USA. In: The third international scientific conference BALWOIS 2008: water observation and information systems for decision support, pp 27–31

  • Sanches Fernandes LF, Marques M, Roçadas L, Moura JP (2010) Systèmes d’aide à la décision appliqués aux ressources hydriques–Cas d’étude le bassin hydrographique de la rivière Pinhão, Portugal. In: SimHydro 2010, Hydraulic modeling and uncertainty, Sophia Antipolis, France

  • Sanches Fernandes LF, dos Santos CMM, Pereira AP, Moura JP (2011) Model of management and decision support systems in the distribution of water for consumption: case study in North Portugal. Eur J Environ Civil Eng 15:411–426

    Google Scholar 

  • Sanches Fernandes L, Seixas FJ, Oliveira PC, Leitao S, Moura JP (2012) Climate-change impacts on nitrogen in a hydrographical basin in the northeast of Portugal. Fresenius Environ Bull 21:3643–3650

    Google Scholar 

  • Sanches Fernandes LF, Marques MJ, Oliveira PC, Moura JP (2014) Decision support systems in water resources in the demarcated region of Douro—case study in Pinhão river basin, Portugal. Water Environ J 28:350–357

    Google Scholar 

  • Santos JF, Pulido‐Calvo I, Portela MM (2010) Spatial and temporal variability of droughts in Portugal. Water Resour Res 46

  • Santos R, Fernandes LS, Moura J, Pereira M, Pacheco F (2014) The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. J Hydrol 519:1297–1314

    Article  Google Scholar 

  • Santos R, Fernandes LS, Pereira M, Cortes R, Pacheco F (2015a) A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Sci Total Environ 536:295–305

    Article  Google Scholar 

  • Santos R, Fernandes LS, Pereira M, Cortes R, Pacheco F (2015b) Water resources planning for a river basin with recurrent wildfires. Sci Total Environ 526:1–13

    Article  Google Scholar 

  • Santos R et al (2015c) Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci Total Environ 511:477–488

    Article  Google Scholar 

  • Santos RMB, Sanches Fernandes LF, Pereira MG, Cortes RMV, Pacheco FAL (2015d) Water resources planning for a river basin with recurrent wildfires. Sci Total Environ 526:1–13. doi:10.1016/j.scitotenv.2015.04.058

    Article  Google Scholar 

  • Shakesby R (2011a) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105:71–100

    Article  Google Scholar 

  • Shakesby R (2011b) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105:71–100

    Article  Google Scholar 

  • Shamsudin S, Hashim N (2002) Rainfall runoff simulation using MIKE11 NAM. J Kejuru Awam 15:26–38

    Google Scholar 

  • Shaw EM (1988) J Biol Chem, pp 2768–2772

  • Shaw EM (1994) Hydrogeology in Practice, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Souchère V, King C, Dubreuil N, Lecomte-Morel V, Le Bissonnais Y, Chalat M (2003) Grassland and crop trends: role of the European Union Common Agricultural Policy and consequences for runoff and soil erosion. Environ Sci Policy 6:7–16

    Article  Google Scholar 

  • Sousa PM, Trigo RM, Pereira MG, Bedia J, Gutiérrez JM (2015) Different approaches to model future burnt area in the Iberian Peninsula. Agric For Meteorol 202:11–25

    Article  Google Scholar 

  • Strauch M, Bernhofer C, Koide S, Volk M, Lorz C, Makeschin F (2012) Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J Hydrol 414:413–424

    Article  Google Scholar 

  • Telesca L, Pereira M (2010) Time-clustering investigation of fire temporal fluctuations in Portugal. Nat Hazards Earth Syst Sci 10:661–666

    Article  Google Scholar 

  • Trigo RM, Sousa PM, Pereira MG, Rasilla D, Gouveia CM (2013) Modelling wildfire activity in Iberia with different atmospheric circulation weather types. Int J Climatol

  • Úbeda X, Sala M (1998) Variations in runoff and erosion in three areas with different fire intensities. Geookodynamik 19:179–188

    Google Scholar 

  • Varela M, Benito E, Keizer J (2010) Wildfire effects on soil erodibility of woodlands in NW Spain. Land Degrad Dev 21:75–82

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, García-Vera MA, Stepanek P (2010) A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. Int J Climatol 30:1146–1163

    Article  Google Scholar 

  • Walsh R, Boakes D, Coelho CdO, Gonçalves A, Shakesby R, Thomas A (1994) Impact of fire-induced hydrophobicity and post-fire forest litter on overland flow in northern and central Portugal. In: Proceedings of the second international conference on forest fire research, pp 1149–1159

  • Water-Atlas (2009) Overall runoff coefficient Continental Portugal. SNIRH–National Information System for Water Resources, Institute of Water I.P. Ministry of Environment, Spatial Planning and Regional Development

  • Wijesekara G, Gupta A, Valeo C, Hasbani J-G, Qiao Y, Delaney P, Marceau D (2012) Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J Hydrol 412:220–232

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by European Union Funds (FEDER/COMPETE—Operational Competitiveness Programme) and by national funds (FCT—Portuguese Foundation for Science and Technology) under the project project UID/AGR/04033/2013 and project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems—NORTE-07-0124-FEDER-0000044. We are also in debt to the Portuguese Water Institute for providing the precipitation data in the site of the National Information System for Water Resources (Sistema Nacional de Informação de Recursos Hídricos, SNIRH). Finally, the authors are especially thankful to two anonymous reviewers for their suggestions and comments that helped make the manuscript much clearer and consistent as well as to João Pereira for the final spelling and grammar review of the Manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário G. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.G., Fernandes, L.S., Carvalho, S. et al. Modelling the impacts of wildfires on runoff at the river basin ecological scale in a changing Mediterranean environment. Environ Earth Sci 75, 392 (2016). https://doi.org/10.1007/s12665-015-5184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5184-y

Keywords

Navigation