Skip to main content
Log in

Inhibitive Action of Novel Schiff Base Towards Corrosion of API 5L Carbon Steel in 1 M Hydrochloric Acid Solutions

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Schiff base N,N′-bis(4-hydroxybenzaldehyde)-1,2-cyclohexandiimine as green corrosion inhibitor for API 5L carbon steel in 1 M hydrochloric acid solutions has been studied using electrochemical techniques. Results showed that the inhibition occurred through adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency was found to increase with increasing inhibitor concentration and decreased with increasing temperature. Thermodynamic parameters for adsorption and activation processes were determined. Polarization data indicated that this compound acted as mixed-type inhibitors and the adsorption isotherm basically obeys the Langmuir adsorption isotherm. The inhibition performance of inhibitor was also evidenced by atomic force microscopy and SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ramesh Babu B, and Thangavel K, Anti-corros Methods Mater 52 (2005) 219.

    Article  Google Scholar 

  2. Fouda A S, Mostafa H A, Heakal F E, and Elewady G Y, Corros Sci 47 (2005) 1988.

    Article  Google Scholar 

  3. Yurchenko R, Pogrebova L, Pilipenko T, and Shubina T, Russ J Appl Chem 79 (2006) 1100.

    Article  Google Scholar 

  4. Abdallah M, Helal E A, and Fouda A S, Corros Sci 48 (2006) 1639.

    Article  Google Scholar 

  5. Jafari H, Danaee I, Eskandari H, and RashvandAvei M, Ind Eng Chem Res 52 (2013) 6617.

    Article  Google Scholar 

  6. Hosseini M G, Ehteshamzadeh M, and Shahrabi T, Electrochim Acta 52 (2007) 3680.

    Article  Google Scholar 

  7. Heydari M, and Javidi M, Corros Sci 61 (2012) 148.

    Article  Google Scholar 

  8. Bentiss F, Bouanis M, Mernari B, Traisnel M, Vezin H, and Lagrenee M, Appl Surf Sci 253 (2007) 3696.

    Article  Google Scholar 

  9. Stanly Jacob K, and Parameswaran G, Corros Sci 52 (2010) 224.

    Article  Google Scholar 

  10. Lowmunkhong P, Ungthararak D, and Sutthivaiyakit P, Corros Sci 52 (2010) 30.

    Article  Google Scholar 

  11. Ghareba S, and Omanovic S, Electrochim Acta 56 (2011) 3890.

    Article  Google Scholar 

  12. Hu X, Alzawai Kh, Gnanavelu A, Neville A, Wang Ch, Crossland A, and Martin J, Wear 271 (2011) 1432.

    Article  Google Scholar 

  13. Morales-Gil P, Negro-Silva G, Romero-Romo M, Angeles-Chavez C, and Palomar-Pardave M, Electrochim Acta 49 (2004) 4733.

    Article  Google Scholar 

  14. Eliyan F F, Mahdi E, and Alfantazi A, Corros Sci 58 (2012) 181.

    Article  Google Scholar 

  15. Tang F, Wang X, Xu X, and Li L, Colloids Surf A 369 (2010) 101.

    Article  Google Scholar 

  16. Godec R F, and Dolecek V, Colloids Surf A 244 (2004) 73.

    Article  Google Scholar 

  17. Negm N A, Ghuiba F M, and Tawfik S M, Corros Sci 53 (2011) 3566.

    Article  Google Scholar 

  18. Şafak S, Duran B, Yurt A, and Türkoğlu G, Corros Sci 54 (2012) 251.

    Article  Google Scholar 

  19. Hegazy M A, Hasan A M, Emara M M, Bakr M F, and Youssef A H, Corros Sci 65 (2012) 67.

    Article  Google Scholar 

  20. Lashgari M, Arshadi M R, and Miandari S, Electrochim Acta 55 (2010) 6058.

    Article  Google Scholar 

  21. Kustu C, Emregul K C, and Atakol O, Corros Sci 49 (2007) 2800.

    Article  Google Scholar 

  22. Prabhu R A, Venkatesha T V, Shanbhag A V, Kulkarni G M, and Kalkhambkar R G, Corros Sci 50 (2008) 3356.

    Article  Google Scholar 

  23. Quartarone G, Bonaldo L, and Tortato C, Appl Surf Sci 252 (2006) 8251.

    Article  Google Scholar 

  24. Obot I B, Obi-Egbedi N O, and Umoren S A, Corros Sci 51 (2009) 1868.

    Article  Google Scholar 

  25. Fairhurst S A, Hughes D L, Kleinkes U, Leigh G J, Sanders J R, and Weisner J, Non-planar co-ordination of the Schiff-base dianion N, N′-2, 2-dimethyltrimethylenebis [salicylideneiminate( 2–)] to vanadium, J Chem Soc Dalton Trans 112 (1995) 321–326.

  26. Aghassi A, Jafarian M, Danaee I, Gobal F, and Mahjani M G, J Electroanal Chem 662 (2011) 415.

    Article  Google Scholar 

  27. Quartarone G, Ronchin L, Vavasori A, Tortato C, and Bonaldo L, Corros Sci 64 (2012) 82.

    Article  Google Scholar 

  28. Fragoza-Mar L, Olivares-Xometl O, Domnguez-Aguilar M A, Flores E A, Arellanes-Lozada P, and Jiménez-Cruz F, Corros Sci 61 (2012) 171.

    Article  Google Scholar 

  29. Ashassi-Sorkhabi H, Shaabani B, and Seifzadeh D, Appl Surf Sci 239 (2005) 154.

    Article  Google Scholar 

  30. Chetouani A, Hammouti B, Benhadda T, and Daoudi M, Appl Surf Sci 249 (2005) 375.

    Article  Google Scholar 

  31. Chetouani A, Aouniti A, Hammouti B, Benchat N, Benhadda T, and Kertit S, Corros Sci 45 (2003) 1675.

    Article  Google Scholar 

  32. Emeregül K C, and Hayval M, Corros Sci 48 (2006) 797.

    Article  Google Scholar 

  33. Satapathy A K, Gunasekaran G, Sahoo S C, Amit K, and Rodrigues P V, Corros Sci 51 (2009) 2848.

    Article  Google Scholar 

  34. Olivares O, Likhanova N V, Gomez B, Navarrete J, Llanos-Serrano M E, Arce E, and Hallen J M, Appl Surf Sci 252 (2006) 2894.

    Article  Google Scholar 

  35. Abdel Rehim S S, Hazzazi O A, Amin M A, and Khaled K F, Corros Sci 50 (2008) 2258.

    Article  Google Scholar 

  36. Saleh M M, and Atia A A, J Appl Electrochem 36 (2006) 899.

    Article  Google Scholar 

  37. Gerengi H, and Ibrahim Sahin H, Ind Eng Chem Res 51 (2012) 780.

    Article  Google Scholar 

  38. Emregül K C, and Atakol O, Mater Chem Phys 82 (2003) 188.

    Article  Google Scholar 

  39. Li X H, Deng S D, and Fu H, J Appl Electrochem 40 (2010) 1641.

    Article  Google Scholar 

  40. Larabi L, Harek Y, Traianel M, and Mansri A, J Appl Electrochem 34 (2004) 833.

    Article  Google Scholar 

  41. Mansfeld F, Kendig M W, and Tsai S, Corrosion 38 (1982) 570.

    Article  Google Scholar 

  42. Shih H, and Mansfeld F, Corros Sci 29 (1989) 1235.

    Article  Google Scholar 

  43. Martinez S, and Metikoš-Huković M, J Appl Electrochem 33 (2003) 1137.

    Article  Google Scholar 

  44. Bentiss F, Lebrini M, Vezin H, Chai F, Traisnel M, and Lagrené M, Corros Sci 51 (2009) 2165.

    Article  Google Scholar 

  45. Danaee I, and Noori S, Int J Hydrog Energy 36 (2011) 12102.

    Article  Google Scholar 

  46. Aramaki K, Hagiwara M, and Nishihara H, Corros Sci. 5 (1987) 487.

    Article  Google Scholar 

  47. Aljourani J, Raeissi K, and Golozar M A, Corros Sci 51 (2009) 1836.

    Article  Google Scholar 

  48. Obot I B, and Obi-Egbedi N O, Curr Appl Phys 11 (2011) 382.

    Article  Google Scholar 

  49. Herrag L, Chetouani A, Elkadiri S, Hammouti B, and Aouniti A, Port Electrochim Acta 26 (2008) 211.

    Article  Google Scholar 

  50. Marsh J, Advanced Organic Chemistry, third ed., Wiley Eastern, New Delhi (1988).

    Google Scholar 

  51. Martinez S, and Stern I, Appl Surf Sci 199 (2002) 83.

    Article  Google Scholar 

  52. Bockris J O M, and Reddy A K N, Modern Electrochemistry, vol. 2, Plenum Publishing Corporation, New York (1976).

    Google Scholar 

  53. Oguzie E E, Unaegbu C, Ogukwe C N, Okolue B N, and Onuchukwu A I, Mater Chem Phys 84 (2004) 363.

    Article  Google Scholar 

  54. Bellman C, in Polymer Surfaces and Interfaces, (ed) Stamm M, Springer, Berlin (2008).

    Google Scholar 

  55. Mu G, Li X, Qu Q, and Zhou J, Corros Sci 48 (2006) 445.

    Article  Google Scholar 

  56. Flis J, and Zakroczymski T, J Electrochem Soc 41 (1996) 1245.

    Google Scholar 

  57. Donahue F M, and Nobe K, J Electrochem Soc 112 (1965) 886.

    Article  Google Scholar 

  58. Kamis E, Bellucci F, Latanision R M, and El-Ashry E S H, Corrosion 47 (1991) 677.

    Article  Google Scholar 

  59. Li X H, Deng S D, Fu H, and Mu G N, Corros Sci 51 (2009) 2639.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojat Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Danaee, I. & Eskandari, H. Inhibitive Action of Novel Schiff Base Towards Corrosion of API 5L Carbon Steel in 1 M Hydrochloric Acid Solutions. Trans Indian Inst Met 68, 729–739 (2015). https://doi.org/10.1007/s12666-014-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0506-4

Keywords

Navigation