Skip to main content
Log in

Microstructure Evolution During Hot Deformation of a Micro-Alloyed Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present investigation, hot deformation by uniaxial compression of a microalloyed steel has been carried out, using a deformation dilatometer, after homogenization at 1200 °C for 20 min up to strains of 0.4, 0.8 and 1.2 at different temperatures of 900, 1000 and 1100 °C, at a constant strain rate of 2 s−1 followed by water quenching. In all the deformation conditions, initiation of dynamic recrystallization (DRX) is observed, however, stress peaks are not observed in the specimens deformed at 900 and 1000 °C. The specimens deformed at 900 °C showed a combination of acicular ferrite (AF) and bainite (B) microstructure. There is an increase in the acicular ferrite fraction with increase in strain at all these deformation temperatures. At high deformation temperature of 1100 °C, coarsening of DRXed grains is observed. This is attributed to the common limitations involved in fast quenching of the DRXed microstructure, which leads to increase in grain size by metadynamic recrystallization (MDRX). The strain free prior austenite grains promote the formation of large fraction of both bainite and martensite in the transformed microstructures during cooling. The length and width of bainitic ferrite laths also increases with increase in deformation temperature from 900 to 1100 °C and decrease in deformation strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vervynckt S, Verbeken K, Lopez B and Jonas J J, Int Mater Rev 57 (2012) 187.

    Article  Google Scholar 

  2. Nafisi S, Arafin M A, Collins L and Szpunar J, Mater Sci Eng A 531 (2012) 2.

    Article  Google Scholar 

  3. Zhang X, Gao H, Zhang X and Yang Y, Mater Sci Eng A 531 (2012) 84.

    Article  Google Scholar 

  4. Bott I D S, De Souza L F G, Teixeira J C G and P R Rios, Metall Mater Trans A 36 (2005) 443.

    Article  Google Scholar 

  5. Klinkenberg C, Bilgen C, Rodriguez-Ibabe J M, Lopez B and Uranga P, Mater Sci Forum 706–709 (2012) 2752.

    Article  Google Scholar 

  6. Reip C P, Shanmugam S and Misra R D K, Mater Sci Eng A 424 (2006) 307.

    Article  Google Scholar 

  7. Isasti N, Jorge-Badiola D, Taheri M L and Uranga P, Metall Mater Trans A 44 (2013) 3552.

    Article  Google Scholar 

  8. Isasti N, Jorge-Badiola D, Taheri M L, Lopez B and Uranga P, Metall Mater Trans A 42 (2011) 3729.

    Article  Google Scholar 

  9. Khulka K and Aleksandrov S, Metallurgist 50 (2006) 137.

    Article  Google Scholar 

  10. Kostryzhev A G, Alshahrani A, Zhu C, Ringer S P and Pereloma E V, Mater Sci Eng A 581 (2013) 16.

    Article  Google Scholar 

  11. Siciliano F J and Jonas J J, Metall Mater Trans A 31 (2000) 511.

    Article  Google Scholar 

  12. Samuel F H, Yue S, Jonas J J and Zbinden B A, Iron Steel Inst Jpn Int 29 (1989) 878.

    Article  Google Scholar 

  13. Pereda B, Fernandez A I, Lopez B and Rodriguez-Ibabe J M, ISIJ Int 47 (2007) 860.

    Article  Google Scholar 

  14. Ebrahimi G R, Momeni A and Eskandari H, Iran J Mater Form 2 (2015) 43.

    Google Scholar 

  15. Deardo A J, Int Mater Rev 48 (2003) 371.

    Article  Google Scholar 

  16. Opiela M and Ozgowicz W, J Achiev Mater Manuf Eng 55 (2012) 759.

    Google Scholar 

  17. Ryan N D and McQueen H J, Can Metall Q 29 (1990) 147.

    Article  Google Scholar 

  18. Stewart G R, Jonas J J and Montheillet F, ISIJ Int 44 (2004) 1581.

    Article  Google Scholar 

  19. Poliak E I and Jonas J J, Acta Mater 44 (1996) 127.

    Article  Google Scholar 

  20. Poliak E I and Jonas J J, ISIJ Int 43 (2003) 692.

    Article  Google Scholar 

  21. Poliak E I and Jonas J J, ISIJ Int 43 (2003) 684.

    Article  Google Scholar 

  22. Najafizadeh A and Jonas J J, ISIJ Int 46 (2006) 1679.

    Article  Google Scholar 

  23. Mandal G K, Stanford N, Hodgson P and Beynon J H, Mat Sci Eng A 556 (2012) 685.

    Article  Google Scholar 

  24. Suikkanen P P, Cayron C, DeArdo A J and Karjalainen L P, J Mater Sci Technol 27 (2011) 920.

    Article  Google Scholar 

  25. Mourino N S, Petrov R, Bae J, Kim K and Kestens L, Mater Sci Forum 638 (2010) 3068.

    Article  Google Scholar 

  26. Backe L, Modeling the microstructural evolution during hot deformation of microalloyed steels, Ph D Thesis, School of Industrial Engineering and Management, Material Science and Engineering, Stockholm (2009).

  27. Qiao G, Xiao F, Zhang X, Cao Y and Liao B, Trans Nonferrous Met Soc China 19 (2009) 1395.

    Article  Google Scholar 

  28. Vervynckt S, Verbekena K, Thibaux P and Houbaert Y, Mater Sci Eng A 528 (2011) 5519.

    Article  Google Scholar 

  29. Ebrahimi G R, Arabshahi H and Javdani M, J Mech Eng Res 2 (2010) 92.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, CSIR-National Metallurgical Laboratory for his kind permission to publish this work. The authors also thank Prof. W. Bleck, IEHK, RWTH-Aachen, Germany for his kind permission to carry out the dilatometry at the institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G.K., Rajinikanth, V., Kumar, S. et al. Microstructure Evolution During Hot Deformation of a Micro-Alloyed Steel. Trans Indian Inst Met 70, 1019–1033 (2017). https://doi.org/10.1007/s12666-016-0895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0895-7

Keywords

Navigation