Skip to main content

Advertisement

Log in

Advances in Nanophotonic Sensing Technologies During Three International Label-Free Lab-On-Chip Projects

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

We review the results from the use of various integrated nanophotonic sensors for label-free biosensing developed in three recent European biosensor collaborations: SABIO, INTOPSENS, and POSITIVE. Nanophotonic transducers are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the nanophotonics chip and integration with microfluidics. From SABIO, we report a volume sensing sensitivity of 240 nm/RIU and detection limit of 5 × 10−6 RIU, and a surface sensing limit of detection (LOD) of 0.9 pg/mm2 for at 1.3 μm for an eight-channel slot-waveguide ring resonator sensor array, within a microfluidics integrated compact cartridge. In INTOPSENS, ongoing efforts have so far resulted in various nanophotonic transducer designs with volume sensing sensitivities as great as 2,169 nm/RIU and LODs down to 8.3 × 10−6 RIU at 1.5 μm. Early experiments from the POSITIVE project have demonstrated volumetric sensitivities as high as 1,247 nm/RIU at 1.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Janasek, D., Franzke, J., Manz, A. (2006). Scaling and the design of miniaturized chemical-analysis systems. Nature, 442, 374–380.

    Article  Google Scholar 

  2. Washburn, A. L., Gunn, L. C., Bailey, R. C. (2009). Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Analytical Chemistry, 81(22), 9499–9506.

    Article  Google Scholar 

  3. Sun, Y. S., Landry, J. P., Fei, Y. Y., Zhu, X. D., Luo, J. T., Wang, X. B., et al. (2008). Effect of fluorescently labeling protein probes on kinetics of protein ligand reactions. Langmuir, 24(23), 13399–13405.

    Article  Google Scholar 

  4. Markov, D. D., Begari, D., Bornhop, D. J. (2002). Breaking the 10−7 barrier for RI measurements in nanoliter volumes. Analytical Chemistry, 74, 5438–5441.

    Article  Google Scholar 

  5. K. Zinoviev, L. G. Carrascosa, José Sánchez del Río,B. Sepúlveda, C. Domínguez, L. M. Lechuga

  6. De Feijter, J. A., Benjamins, J., Veer, F. A. (1978). Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers, 17(7), 1759–1772.

    Article  Google Scholar 

  7. Karlsson, R., Michaelsson, A., Mattsson, L. (1991). Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. Journal of Immunological Methods, 145, 229–240.

    Article  Google Scholar 

  8. Maire, G., Vivien, L., Sattler, G., Kazmierczak, A., Sanchez, B., Gylfason, K. B., et al. (2008). High efficiency silicon nitride surface grating couplers. Optical Expression, 16, 328–333.

    Article  Google Scholar 

  9. Kazmierczak, A., Dortu, F., Schrevens, O., Giannone, D., Vivien, L., Morini, D. M., et al. (2009). Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system. Optical Engineering, 48(1), 014401.

    Article  Google Scholar 

  10. Sohlström, H., Gylfason, K., Hill, D. (2010). Real-time label-free biosensing with integrated planar waveguide ring-resonators. Proceedings of SPIE, 7719, 77190B.

    Article  Google Scholar 

  11. Tiefenthaler, K., & Lukosz, W. (1984). Integrated optical switches and gas sensors. Optics Letters, 9, 137–139.

    Article  Google Scholar 

  12. Lukosz, W., & Tiefenthaler, K. (1988). Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors. Sensors and Actuators, 15(3), 273–284.

    Article  Google Scholar 

  13. Tiefenthaler, K., & Lukosz, W. (1989). Sensitivity of grating couplers as integrated optical chemical sensors. Journal of the Optical Society of America B: Optical Physical, 6(2), 209–220.

    Article  Google Scholar 

  14. Almeida, V. R., Xu, Q., Barrios, C. A., Lipson, M. (2004). Guiding and confining light in void nanostructure. Optics Letters, 29(11), 1209–1211.

    Article  Google Scholar 

  15. Xu, Q., Almeida, V. R., Panepucci, R. R., Lipson, M. (2004). Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Optical Letters, 29(14), 1626–1628.

    Article  Google Scholar 

  16. Yariv, A. (2000). Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36(4), 321–322.

    Article  Google Scholar 

  17. Gylfason, K. B., [Integrated optical slot-waveguide ring resonator sensor arrays for lab-on-chip applications], PhD Thesis TRITA-EE 2010:012, KTH-Royal institute of Technology, Stockholm, (2010).

  18. Gylfason, K. G., Carlborg, C. F., Kazmierczak, A., Dortu, F., Sohlström, H., Vivien, L., et al. (2010). On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array. Optical Expression, 18(4), 3226–3237.

    Article  Google Scholar 

  19. Carlborg, C. F., Gylfason, K. B., Kamierczak, A., Dortu, F., Bañuls Polo, M. J., Maquieira Catala, A., et al. (2010). A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab on a Chip, 10, 281–290.

    Article  Google Scholar 

  20. Barrios, C. A., Gylfason, K. B., Sánchez, B., Griol, A., Sohlström, H., Holgado, M., et al. (2007). Slot-waveguide biochemical sensor. Optics Letters, 32(21), 3080–3082.

    Article  Google Scholar 

  21. Vivien, L., Marris-Morini, D., Griol, A., Gylfason, K. B., Hill, D., Alvarez, J., et al. (2008). Vertical multiple-slot waveguide ring resonators in silicon nitride. Optical Expression, 16(22), 17237–17242.

    Article  Google Scholar 

  22. Hu, J., Carlie, N., Feng, N.-N., Petit, L., Agarwal, A., Richardson, K., et al. (2008). Planar waveguide-coupled, high-index-contrast, high-q resonators in chalcogenide glass for sensing. Optics Letters, 33(21), 2500–2502.

    Article  Google Scholar 

  23. Hanumegowda, N. M., Stica, C. J., Patel, B. C., White, I., Fan, X. (2005). Refractometric sensors based on microsphere resonators. Applied Physics Letters, 87(20), 201107.

    Article  Google Scholar 

  24. Fan, X., White, I. M., Zhu, H., Suter, J. D., Oveys, H. (2007). Overview of novel integrated optical ring resonator bio/chemical sensors. Proceedings of SPIE, 6452, 64520M.

    Article  Google Scholar 

  25. Claes, T., Molera, J. G., De Vos, K., Schacht, E., Baets, R., Bienstman, P. (2009). Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics Journal, 1(3), 197–204.

    Article  Google Scholar 

  26. Yalcin, A., Popat, K. C., Aldridge, J. C., Desai, T. A., Hryniewicz, J., Chbouki, N., et al. (2006). Optical sensing of biomolecules using microring resonators. IEEE Journal of Sel. Topics in Quantum Electronics, 12(1), 148–155.

    Article  Google Scholar 

  27. De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., Baets, R. (2007). Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Optical Expression, 15(12), 7610–7615.

    Article  Google Scholar 

  28. Pfeifer, P. (1999). Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical, 54(1–2), 166–175.

    Article  Google Scholar 

  29. Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., et al. (2009). Plasmonic nanorod metamaterials for biosensing. Nature Materials, 8(11), 867–871.

    Article  Google Scholar 

  30. Unpublished work

  31. T. Claes, W. Bogaerts, P. Bienstman “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit” 25 October 2010/Vol. 18, No. 22/Optics Express 22747

  32. Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., et al. (2010). Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16, 654–661.

    Article  Google Scholar 

  33. Densmore, A., Xu, D. X., Janz, S., Waldron, P., Mischki, T., Lopinsk, G., et al. (2008). Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Optics Letters, 33(6), 596–598.

    Article  Google Scholar 

  34. M. Kristensen, A Krüger, N. Groothoff, J. García-Rupérez, V. Toccafondo, J. García-Castelló, M. J. Bañuls, Sergio Peransi-Llopis, A. Maquieira, “Photonic crystal biosensor chip for label-free detection of bacteria” Conference paper, Optical sensors (sensors), Toronto, Canada, June 12, 2011, Biochemical sensors ii (swb)

  35. J. García-Rupérez, V. Toccafondo, M. J. Bañuls, A. Griol, J. G. Castelló, S. Peransi-Llopis, A.Maquieira, “Development of high sensitivity biosensors using SOI photonic crystal waveguides”, Imaginenano - ppm conference. From 2011-04-11 to 2011-04-14. Bilbao, Spain.

  36. García-Rupérez, J., Toccafondo, V., Bañuls, M. J., García Castelló, J., Griol, A., Peransi-Llopis, S., et al. (2010). “Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime”. Optics Express, 18(23), 24276–24286.

    Article  Google Scholar 

  37. V. Toccafondo, J. García-Rupérez, M. J. Bañuls, A. Griol, J. G. Castelló, S. Peransi-Llopis A.Maquieira, “Photonic crystal waveguide sensor for low concentration DNA detection” Conference Paper, Optical Sensors (Sensors), Karlsruhe, Germany,June 21, 2010

  38. Toccafondo, V., García-Rupérez, J., Bañuls, M. J., Griol, A., Castelló, J. G., Peransi-Llopis, S., et al. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673–3675.

    Article  Google Scholar 

  39. Bisi, O., Ossicini, S., Pavesi, L. (2000). Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface Science Reports, 38(1–3), 1–126.

    Article  Google Scholar 

  40. J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, J. Martínez-Pastor, “Birefringent Porous Silicon Membranes for Optical Sensing” Submitted to Optics Express (2011)

  41. Suárez, I., Chirvony, V., Hill, D., Martínez-Pastor, J. Simulation of surface-modified porous silicon photonic crystals for biosensing applications. Photonics and Nanostructures: Fundamentals and Applications. doi:10.1016/j.photonics.2011.04.014, 2011.

  42. Smith, R. L., & Collins, S. D. (1992). Porous silicon formation mechanisms. Journal of Applied Physics, 71(8), 1–22.

    Article  Google Scholar 

  43. Künzner, N., Kovalev, D., Diener, J., Gross, E., Timoshenko, V. Y., Polisski, G., et al. (2001). Giant birefringence in anisotropically nanostructured silicon. Optics Letters, 26(16), 1265–1267.

    Article  Google Scholar 

  44. Liu, R., Schmedake, T. A., Yang Li, Y., Sailor, M. J., Fainman, Y. (2002). Novel porous silicon vapor sensor based on polarization interferometry. Sensors and Actuators B: Chemical, 87(1), 58–62.

    Article  Google Scholar 

  45. Ghulinyan, M., Oton, C. J., Bonetti, G., Gaburro, Z., Pavesi, L. (2003). Free-standing porous silicon single and multiple optical cavities. Journal of Applied Physics, 93(12), 972.

    Article  Google Scholar 

  46. Pap, A. E., Kordás, K., George, T. F., Leppävuori, S. (2004). Thermal oxidation of porous silicon: study on reaction kinetics. The Journal of Physical Chemistry. B, 108(34), 12744–12747.

    Article  Google Scholar 

  47. J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, J. Martínez-Pastor, “Birefringent porous silicon membranes for optical sensing”, Under review at Optics Express.

Download references

Acknowledgments

As project manager of all three projects, there are many contributors with whom I have worked directly and am most grateful for their efforts. I thank Jesús Álvarez Álvarez, Hans Sohlström, and Kristinn Gylfason for their photonics contributions in both SABIO and POSITIVE. Other direct contributors to the SABIO work summarized here are Andrzej Kaźmierczak, Fabien Dortou, Laurent Vivien, Jon Popplewell, Gerry Ronan, and Carlos A. Barrios. Other direct contributors to the INTOPSENS work summarized here include Tom Claes, Peter Bienstman, Asger Krüger, Martin Kristensen, Jaime Garcia Rupérez, Veronica Toccafondo, and Javier Garcia. Further direct contributors from the POSITIVE project for the article include Vladimir Chirvony, Isaac Suárez, Paolo Bettotti, and Juan Martínez Pastor. As I review the collaborative projects SABIO, INTOPSENS, and POSITIVE, many others have contributed. The work reported here was financed by the European Commission through the sixth framework project FP6-IST-SABIO, and the seventh framework projects FP7-ICT-INTOPSENS and FP7-ICT-POSITIVE, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, D. Advances in Nanophotonic Sensing Technologies During Three International Label-Free Lab-On-Chip Projects. BioNanoSci. 1, 162–172 (2011). https://doi.org/10.1007/s12668-011-0026-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0026-1

Keywords

Navigation