Skip to main content
Log in

Ratio Oxalate to Formate Tuned by pH During CO2 Reduction Driven by Solvated Electron at the Electrified Plasma/Liquid Interface

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrified plasma/liquid interface (PLI) promotes the CO2 reduction (CO2R) with a spectrum of products distinct from that of other electrochemical platforms. However, the lack of fundamental understanding greatly disables the preconize of its industrial potential. In particular, the inaccurate reaction mechanism of CO2R via electrified PLI brings imprecision on the theoretical predictions of selectivities in acid electrolytes. For this reason, the present work categorically considers the proton as a reactant and the proton concentration as an essential parameter for the dynamical model describing the CO2RR via electrified PLI. Two new routes toward formic acid production are proposed, namely, the disproportionation-like and radical cross-combination reactions. Both were capable of significantly reproducing the feature observed with real-life experiments for the final product proportions; however, the cross-combination reaction adjusts the most. With these reasonably assertive mechanisms of CO2RR in acid media, it was possible to predict that an extremely acid pH (~ 1) is required to attain concentration ratio oxalate to formate equal to 50 to 50 and 10 to 90 when considering the disproportionation-like and cross-combination reaction, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.R.L. Ting, O. Piqué, S.Y. Lim, M. Tanhaei, F. Calle-Vallejo, B.S. Yeo, ACS Catal. 10, 4059 (2020)

    CAS  Google Scholar 

  2. T.N. Huan, D.A. Dalla Corte, S. Lamaison, D. Karapinar, L. Lutz, N. Menguy, M. Foldyna, S.-H. Turren-Cruz, A. Hagfeldt, F. Bella, M. Fontecave, V. Mougel, Proc. Natl. Acad. Sci. 116, 9735 (2019)

    CAS  Google Scholar 

  3. C.-T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P. García de Arquer, A. Kiani, J.P. Edwards, P. De Luna, O.S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E.H. Sargent, Science 360, 783 (2018)

    CAS  Google Scholar 

  4. J. Li, F. Che, Y. Pang, C. Zou, J.Y. Howe, T. Burdyny, J.P. Edwards, Y. Wang, Z. Fengwang, P.D. Wang, C.-T. Luna, T.-T. Dinh, M.I. Zhuang, S. Saidaminov, T.W. Cheng, Y.Z. Finfrock, S.-H. LuMa, Y.-S. Hsieh, G.A. Liu, W.-F. Botton, X. Du Pong, J. Guo, T.-K. Sham, E.H. Sargent, D. Sinton, Nat. Commun. 9, 4614 (2018)

    Google Scholar 

  5. G.K. Ramesha, J.F. Brennecke, P.V. Kamat, ACS Catal. 4, 3249 (2014)

    CAS  Google Scholar 

  6. S. Xu, E.A. Carter, Chem. Rev. 119, 6631 (2019)

    CAS  Google Scholar 

  7. B.M. Foster, A.R. Paris, J.J. Frick, D.A. Blasini-Pérez, R.J. Cava, A.B. Bocarsly, ACS Appl. Energy Mater. 3, 109 (2020)

    CAS  Google Scholar 

  8. J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, A.B. Bocarsly, Chem. Rev. 115, 12888 (2015)

    CAS  Google Scholar 

  9. E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, J. Am. Chem. Soc. 132, 11539 (2010)

    CAS  Google Scholar 

  10. R.A. Davies, A. Hickling, J. Chem. Soc., 3595 (1952)

  11. A.R. Denaro, A. Hickling, J. Electrochem. Soc. 105, 265 (1958)

    CAS  Google Scholar 

  12. A. Hickling, G.R. Newns, J. Chem. Soc., 5177 (1961)

  13. A. Hickling, M.D. Ingram, J. Electroanalytical Chem. (1959) 8, 65 (1964)

    CAS  Google Scholar 

  14. J. Goodman, A. Hickling, B. Schofield, J. Electroanal. Chem. 48, 319 (1973)

    CAS  Google Scholar 

  15. H.E. Delgado, D.T. Elg, D.M. Bartels, P. Rumbach, D.B. Go, Langmuir 36, 1156 (2020)

    CAS  Google Scholar 

  16. C. Richmonds, M. Witzke, B. Bartling, S.W. Lee, J. Wainright, C.-C. Liu, R.M. Sankaran, J. Am. Chem. Soc. 133, 17582 (2011)

    CAS  Google Scholar 

  17. P. Rumbach, M. Witzke, R.M. Sankaran, D.B. Go, J. Am. Chem. Soc. 135, 16264 (2013)

    CAS  Google Scholar 

  18. P. Rumbach, D.M. Bartels, R.M. Sankaran, D.B. Go, Nat. Commun. 6, 7248 (2015)

    CAS  Google Scholar 

  19. P. Rumbach, D.M. Bartels, R.M. Sankaran, B.G. David, J. Phys. D. Appl. Phys. 48, 424001 (2015)

    Google Scholar 

  20. P. Rumbach, R. Xu, D.B. Go, J. Electrochem. Soc. 163, F1157 (2016)

    CAS  Google Scholar 

  21. S. Ghosh, R. Hawtof, P. Rumbach, D.B. Go, R. Akolkar, R.M. Sankaran, J. Electrochem. Soc. 164, D818 (2017)

    CAS  Google Scholar 

  22. H.E. Delgado, R.C. Radomsky, D.C. Martin, D.M. Bartels, P. Rumbach, D.B. Go, J. Electrochem. Soc. 166, E181 (2019)

    CAS  Google Scholar 

  23. P. Rumbach, D. Bartels, M, D. Go, B, Plasma Sources Sci. Technol. 27, 115013 (2018)

    CAS  Google Scholar 

  24. W. Megan, R. Paul, B.G. David, R.M. Sankaran, J. Phys. D. Appl. Phys. 45, 442001 (2012)

    Google Scholar 

  25. B. Peter, L. Jingjing, D. Joris, G.K. Michael, V. Jan, L. Christophe, J. Phys. D. Appl. Phys. 41, 215201 (2008)

    Google Scholar 

  26. V.S.S.K. Kondeti, U. Gangal, S. Yatom, P.J. Bruggeman, J. Vac. Sci. Technol. A 35, 061302 (2017)

    Google Scholar 

  27. U. Keiichiro, H. Yu, S. Osamu, Plasma Sources Sci. Technol. 22, 032003 (2013)

    Google Scholar 

  28. T. Fumiyoshi, S. Yudai, S. Naoki, U. Satoshi, Jpn. J. Appl. Phys. 53, 126201 (2014)

    Google Scholar 

  29. J. Liu, B. He, Q. Chen, J. Li, Q. Xiong, G. Yue, X. Zhang, S. Yang, H. Liu, Q.H. Liu, Sci. Rep. 6, 38454 (2016)

    CAS  Google Scholar 

  30. K.S.G. Susanta, S. Rajshree, Plasma Sources Sci. Technol. 26, 015005 (2017)

    Google Scholar 

  31. Y. Gorbanev, D. O'Connell, V. Chechik, Chemistry (Weinheim an Der Bergstrasse, Germany) 22, 3496 (2016)

    CAS  Google Scholar 

  32. Y. Gorbanev, D. Leifert, A. Studer, D. O'Connell, V. Chechik, Chem. Commun. 53, 3685 (2017)

    CAS  Google Scholar 

  33. Y. Gorbanev, E. Vervloessem, A. Nikiforov, A. Bogaerts, ACS Sustain. Chem. Eng. (2020)

  34. A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 3, 251 (2012)

    CAS  Google Scholar 

  35. S. Ringe, C.G. Morales-Guio, L.D. Chen, M. Fields, T.F. Jaramillo, C. Hahn, K. Chan, Nat. Commun. 11, 33 (2020)

    CAS  Google Scholar 

  36. A. Mota-Lima, J.F. do Nascimento, O. Chiavone-Filho, C.A.O. Nascimento, J. Phys. Chem. C 123, 21896 (2019)

    CAS  Google Scholar 

  37. A. Mota-Lima, J. Phys. Chem. C 124, 10907 (2020)

    CAS  Google Scholar 

  38. N. Getoff, G. Scholes, J. Weiss, Tetrahedron Lett. 1, 17 (1960)

    Google Scholar 

  39. R. Flyunt, M.N. Schuchmann, C. von Sonntag, Chem. Eur. J. 7, 796 (2001)

    CAS  Google Scholar 

  40. A. Mota-Lima, ECS Trans. 97, 429 (2020)

    CAS  Google Scholar 

  41. I.A. Gonçalves, J. Barauna, F.J. Cunha-Filho, O. Chiavone-Filho, J.O. Vitoriano, C. Alves Jr., A. Mota-Lima, J. Braz. Chem. Soc. 30, 1252 (2019)

    Google Scholar 

  42. P. Neta, J. Grodkowski, A.B. Ross, J. Phys. Chem. Ref. Data 25, 709 (1996)

    CAS  Google Scholar 

  43. N. Getoff, Int. J. Hydrog. Energy 19, 667 (1994)

    CAS  Google Scholar 

  44. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988)

    CAS  Google Scholar 

  45. B.C. Garrett, D.A. Dixon, D.M. Camaioni, D.M. Chipman, M.A. Johnson, C.D. Jonah, G.A. Kimmel, J.H. Miller, T.N. Rescigno, P.J. Rossky, S.S. Xantheas, S.D. Colson, A.H. Laufer, D. Ray, P.F. Barbara, D.M. Bartels, K.H. Becker, K.H. Bowen, S.E. Bradforth, I. Carmichael, J.V. Coe, L.R. Corrales, J.P. Cowin, M. Dupuis, K.B. Eisenthal, J.A. Franz, M.S. Gutowski, K.D. Jordan, B.D. Kay, J.A. LaVerne, S.V. Lymar, T.E. Madey, C.W. McCurdy, D. Meisel, S. Mukamel, A.R. Nilsson, T.M. Orlando, N.G. Petrik, S.M. Pimblott, J.R. Rustad, G.K. Schenter, S.J. Singer, A. Tokmakoff, L.-S. Wang, T.S. Zwier, Chem. Rev. 105, 355 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

Professor Ernesto Rafael Gonzalez, an emeritus professor of São Paulo University, passed away with 82 years old, of which 45 years was devoted to educating new scientists in Brazil. His genuine integrity and his strikingly honest comments had fostered the scientific surroundings to civilize according to the highest scientific standard. This manuscript celebrates his scientific spirit/taste over new challenges, all his efforts, and the universality of the experience he provided for all his students.

Funding

The CNPq (155046/2018-7) sponsored this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mota-Lima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In honor and memory of Professor Ernesto Rafael Gonzalez

Electronic supplementary material

ESM 1

(DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota-Lima, A. Ratio Oxalate to Formate Tuned by pH During CO2 Reduction Driven by Solvated Electron at the Electrified Plasma/Liquid Interface. Electrocatalysis 11, 618–627 (2020). https://doi.org/10.1007/s12678-020-00620-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00620-z

Keywords

Navigation