Skip to main content

Advertisement

Log in

3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH)2, nanoparticle-sphere-like Ni(OH)2 sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH)2-NPS has the best electrocatalytic activity (η = 250 mV) and the lowest Tafel slope (73.9 mV dec−1), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO2 (340 mV and 87.4 mV dec−1) is also inferior to Ni(OH)2-NPS. By comparing three Ni(OH)2 samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.K. Hurst, Chemistry. In pursuit of water oxidation catalysts for solar fuel production, Science 328(5976), 315–316 (2010). https://doi.org/10.1126/science.1187721

    Article  CAS  PubMed  Google Scholar 

  2. K.S. Joya, H.J.M. de Groot, Biomimetic molecular water splitting catalysts for hydrogen generation. Int. J. Hydrogen Energy 37(10), 8787–8799 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.139

    Article  CAS  Google Scholar 

  3. T. Li, X. Ma, J. Wu, F. Chu, L. Qiao, Y. Song, M. Wu, J. Lin, L. Peng, Z. Chen, Ni(OH)2 microspheres in situ self-grown on ultra-thin layered g-C3N4 as a heterojunction electrocatalyst for oxygen evolution reaction. Electrochimica. Acta. 400(2021). https://doi.org/10.1016/j.electacta.2021.139473

  4. T. Li, J. Wu, L. Qiao, Q. Zhu, Z. Fu, J. Lin, J. Chen, L. Peng, B. Wang, Z. Chen, Bimetallic Ni-Hf tellurides as an advanced electrocatalyst for overall water splitting with layered g-C3N4 modification. Materials Today Energy 26 (2022). https://doi.org/10.1016/j.mtener.2022.101002

  5. S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 119(13), 7243–7254 (2015). https://doi.org/10.1021/acs.jpcc.5b00105

    Article  CAS  Google Scholar 

  6. A.G. Oshchepkov, G. Braesch, A. Bonnefont, E.R. Savinova, M. Chatenet, Recent advances in the understanding of nickel-based catalysts for the oxidation of hydrogen-containing fuels in alkaline media. ACS Catal. 10(13), 7043–7068 (2020). https://doi.org/10.1021/acscatal.0c00101

    Article  CAS  Google Scholar 

  7. S. Tahmasebi, S. Jahangiri, N. Mosey, G. Jerkiewicz, A. Mark, S. Cheng, G. Botton, S. Baranton, C. Coutanceau, Remarkably stable nickel hydroxide nanoparticles for miniaturized electrochemical energy storage. ACS Applied Energy Materials 3(8), 7294–7305 (2020). https://doi.org/10.1021/acsaem.0c00483

    Article  CAS  Google Scholar 

  8. Y. Liu, Z. Niu, Y. Lu, L. Zhang, K. Yan, Facile synthesis of CuFe2O4 crystals efficient for water oxidation and H2O2 reduction. J. Alloy. Compd. 735, 654–659 (2018). https://doi.org/10.1016/j.jallcom.2017.11.181

    Article  CAS  Google Scholar 

  9. N. Mirbagheri, J. Chevallier, J. Kibsgaard, F. Besenbacher, E.E. Ferapontova, Electrocatalysis of water oxidation by H2O-capped iridium-oxide nanoparticles electrodeposited on spectroscopic graphite. Chem. Phys. Chem. 15(13), 2844–2850 (2014). https://doi.org/10.1002/cphc.201402079

    Article  CAS  PubMed  Google Scholar 

  10. D. Xiaoqiang, X. Zhoufeng, G. Yaqiong, D. Yong, Polyoxometalate-based catalysts for photocatalytic, chemical catalytic and electrocatalytic water oxidation. Int. J. Hydrogen Energy 42(38), 24169–24175 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.023

    Article  CAS  Google Scholar 

  11. L. Yu, J. Lin, M. Zheng, M. Chen, Y. Ding, Homogeneous electrocatalytic water oxidation at neutral pH by a robust trinuclear copper(ii)-substituted polyoxometalate. Chem. Commun. (Camb) 54(4), 354–357 (2018). https://doi.org/10.1039/c7cc08301g

    Article  CAS  Google Scholar 

  12. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36(3), 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  13. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem. 2(7), 724–761 (2010). https://doi.org/10.1002/cctc.201000126

    Article  CAS  Google Scholar 

  14. E. Mirzakulova, R. Khatmullin, J. Walpita, T. Corrigan, N.M. Vargas-Barbosa, S. Vyas, S. Oottikkal, S.F. Manzer, C.M. Hadad, K.D. Glusac, Electrode-assisted catalytic water oxidation by a flavin derivative. Nat. Chem. 4(10), 794–801 (2012). https://doi.org/10.1038/nchem.1439

    Article  CAS  PubMed  Google Scholar 

  15. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858

    Article  CAS  PubMed  Google Scholar 

  16. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3), 399–404 (2012). https://doi.org/10.1021/jz2016507

    Article  CAS  PubMed  Google Scholar 

  17. J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Gratzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593–6 (2014). https://doi.org/10.1126/science.1258307

  18. J.K. Kim, G.D. Park, J.H. Kim, S.K. Park, Y.C. Kang, Rational design and synthesis of extremely efficient macroporous CoSe2 -CNT composite microspheres for hydrogen evolution reaction. Small 13(27), (2017). https://doi.org/10.1002/smll.201700068

  19. T.H. Nguyen, J. Lee, J. Bae, B. Lim, Binary FeCo oxyhydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. Chemistry 24(18), 4724–4728 (2018). https://doi.org/10.1002/chem.201800022

    Article  CAS  PubMed  Google Scholar 

  20. B. Wei, P. Yao, G. Tang, Z. Qi, W. Hu, J. Hong, C. Chen, Z. Wang, Mn-doped CoSe2 nanosheets as high-efficiency catalysts for the oxygen evolution reaction. Dalton Trans. 48(38), 14238–14241 (2019). https://doi.org/10.1039/c9dt03108a

    Article  CAS  PubMed  Google Scholar 

  21. X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T.N. Lambert, J.A. Vigil, S.E. White, D.J. Davis, S.J. Limmer, P.D. Burton, E.N. Coker, T.E. Beechem, M.T. Brumbach, Electrodeposited Ni(x)Co(3–x)O4 nanostructured films as bifunctional oxygen electrocatalysts. Chem. Commun. (Camb) 51(46), 9511–9514 (2015). https://doi.org/10.1039/c5cc02262b

    Article  CAS  Google Scholar 

  23. Y. Li, M. Zhao, Y. Zhao, L. Song, Z. Zhang, FeNi layered double-hydroxide nanosheets on a 3D carbon network as an efficient electrocatalyst for the oxygen evolution reaction. Part. Part. Syst. Charact. 33(3), 158–166 (2016). https://doi.org/10.1002/ppsc.201500228

    Article  CAS  Google Scholar 

  24. M. Dinari, H. Allami, M.M. Momeni, A high-performance electrode based on Ce-doped nickel‑cobalt layered double hydroxide growth on carbon nanotubes for efficient oxygen evolution. J. Electroanal. Chem. 877 (2020). https://doi.org/10.1016/j.jelechem.2020.114643

  25. R. Zhang, S. Cheng, N. Li, W. Ke, N, S-codoped graphene loaded Ni-Co bimetal sulfides for enhanced oxygen evolution activity. Appl. Surf. Sci. 503 (2020). https://doi.org/10.1016/j.apsusc.2019.144146

  26. A. Dutta, S. Mutyala, A.K. Samantara, S. Bera, B.K. Jena, N. Pradhan, Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity. ACS Energy Lett. 3(1), 141–148 (2017). https://doi.org/10.1021/acsenergylett.7b01141

    Article  CAS  Google Scholar 

  27. J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata, J. Arbiol, M. Muhler, B. Roldan Cuenya, W. Schuhmann, Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energ. Mater. 7(17), (2017). https://doi.org/10.1002/aenm.201700381

  28. B. Li, F. Song, Y. Qian, J. Shaw, Y. Rao, Boron-doped graphene oxide-supported nickel nitride nanoparticles for electrocatalytic oxygen evolution in alkaline electrolytes. ACS Applied Nano Materials 3(10), 9924–9930 (2020). https://doi.org/10.1021/acsanm.0c01963

    Article  CAS  Google Scholar 

  29. J. Ren, M. Antonietti, T.-P. Fellinger, Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energ. Mater. 5(6), (2015). https://doi.org/10.1002/aenm.201401660

  30. Z. Pu, Q. Liu, A.M. Asiri, X. Sun, Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. J. Appl. Electrochem. 44(11), 1165–1170 (2014). https://doi.org/10.1007/s10800-014-0743-6

    Article  CAS  Google Scholar 

  31. X.Q. Shen, K. Xiang, X.-Z. Fu, J.-L. Luo, High active and ultra-stable bifunctional FeNi/CNT electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 46(7), 5398–5402 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.098

    Article  CAS  Google Scholar 

  32. J. Yu, G. Cheng, W. Luo, Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 5(22), 11229–11235 (2017). https://doi.org/10.1039/c7ta02968c

    Article  CAS  Google Scholar 

  33. J. Du, Z. Zou, A. Yu, C. Xu, Selenization of NiMn-layered double hydroxide with enhanced electrocatalytic activity for oxygen evolution. Dalton Trans. 47(22), 7492–7497 (2018). https://doi.org/10.1039/c8dt01372a

    Article  CAS  PubMed  Google Scholar 

  34. Y. Chen, K. Rui, J. Zhu, S.X. Dou, W. Sun, Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chemistry 25(3), 703–713 (2019). https://doi.org/10.1002/chem.201802068

    Article  CAS  PubMed  Google Scholar 

  35. H. Lee, O. Gwon, C. Lim, J. Kim, O. Galindev, G. Kim, Advanced electrochemical properties of PrBa0.5Sr0.5Co1.9Ni0.1O5+δ as a bifunctional catalyst for rechargeable zinc-air batteries. ChemElectroChem 6(12), 3154–3159 (2019). https://doi.org/10.1002/celc.201900633

  36. D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang, Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 6(10), 7918–7925 (2014). https://doi.org/10.1021/am501256x

    Article  CAS  PubMed  Google Scholar 

  37. P. Zhao, H. Nie, Z. Zhou, J. Wang, G. Cheng, NiFe-LDH Grown on three-dimensional Cu3P nano-array for highly efficient water oxidation. ChemistrySelect 3(28), 8064–8069 (2018). https://doi.org/10.1002/slct.201801188

    Article  CAS  Google Scholar 

  38. X. Su, Q. Sun, J. Bai, Z. Wang, C. Zhao, Electrodeposition of porous MoO42- doped NiFe nanosheets for highly efficient electrocatalytic oxygen evolution reactions. Electrochim. Acta 260, 477–482 (2018). https://doi.org/10.1016/j.electacta.2017.12.110

    Article  CAS  Google Scholar 

  39. L.A. Stern, X. Hu, Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discuss 176, 363–379 (2014). https://doi.org/10.1039/c4fd00120f

    Article  CAS  PubMed  Google Scholar 

  40. R. Agoston, M. Abu Sayeed, M.W.M. Jones, M.D. de Jonge, A.P. O'Mullane, Monitoring composiional changes in Ni(OH)2 electrocatalysts employed in the oxygen evolution reaction. Analyst 144(24), (2019) 7318–7325. https://doi.org/10.1039/c9an01905g

  41. S.-Y. Lee, I.-S. Kim, H.-S. Cho, C.-H. Kim, Y.-K. Lee, Resolving potential-dependent degradation of electrodeposited Ni(OH)2 catalysts in alkaline oxygen evolution reaction (OER): in situ XANES studies. Appl. Catal. B Environ. 284 (2021). https://doi.org/10.1016/j.apcatb.2020.119729

  42. N. Kim, D. Lim, Y. Choi, S.E. Shim, S.-H. Baeck, Hexagonal β-Ni(OH)2 nanoplates with oxygen vacancies as efficient catalysts for the oxygen evolution reaction. Electrochimica. Acta. 324 (2019). https://doi.org/10.1016/j.electacta.2019.134868

  43. Z.J. Zhang, Y.J. Zhu, J. Bao, X.R. Lin, H.Z. Zheng, Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method. J. Alloy. Compd. 509(25), 7034–7037 (2011). https://doi.org/10.1016/j.jallcom.2011.03.104

    Article  CAS  Google Scholar 

  44. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015). https://doi.org/10.1038/srep13801

    Article  PubMed  PubMed Central  Google Scholar 

  45. X. Sun, Q. Shao, Y. Pi, J. Guo, X. Huang, A general approach to synthesise ultrathin NiM (M = Fe Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting. J. Mater. Chem. A 5(17), 7769–7775 (2017). https://doi.org/10.1039/c7ta02091k

    Article  CAS  Google Scholar 

  46. J. Yu, G. Cheng, W. Luo, 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 11(4), 2149–2158 (2018). https://doi.org/10.1007/s12274-017-1832-8

    Article  CAS  Google Scholar 

  47. C.C. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p

    Article  CAS  PubMed  Google Scholar 

  48. J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. Engl. 54(25), 7399–7404 (2015). https://doi.org/10.1002/anie.201502226

    Article  CAS  PubMed  Google Scholar 

  49. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, Correction to controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 136(4), 1680–1680 (2014). https://doi.org/10.1021/ja4129636

    Article  CAS  Google Scholar 

  50. X. Wang, Y. Yang, L. Diao, Y. Tang, F. He, E. Liu, C. He, C. Shi, J. Li, J. Sha, S. Ji, P. Zhang, L. Ma, N. Zhao, CeOx-decorated NiFe-layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering. ACS Appl. Mater. Interfaces 10(41), 35145–35153 (2018). https://doi.org/10.1021/acsami.8b11688

    Article  CAS  PubMed  Google Scholar 

  51. X. Chen, H. Wang, B. Xia, R. Meng, Noncovalent phosphorylation of CoCr layered double hydroxide nanosheets with improved electrocatalytic activity for the oxygen evolution reaction. Chem. Commun. (Camb) 55(80), 12076–12079 (2019). https://doi.org/10.1039/c9cc06863e

    Article  CAS  Google Scholar 

  52. J. Du, Z. Zou, A. Yu, C. Xu, Selenization of NiMn-layered double hydroxide with enhanced electrocatalytic activity for oxygen evolution. Dalton Trans. 47(22), 7492–7497 (2018). https://doi.org/10.1039/c8dt01372a

    Article  CAS  PubMed  Google Scholar 

  53. D. Tang, Y. Han, W. Ji, S. Qiao, X. Zhou, R. Liu, X. Han, H. Huang, Y. Liu, Z. Kang, A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation. Dalton Trans. 43(40), 15119–15125 (2014). https://doi.org/10.1039/c4dt01924e

    Article  CAS  PubMed  Google Scholar 

  54. R. Rajendiran, N. Muthuchamy, K.H. Park, O.L. Li, H.J. Kim, K. Prabakar, Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions. J. Colloid. Interface Sci. 566, 224–233 (2020). https://doi.org/10.1016/j.jcis.2020.01.086

    Article  CAS  PubMed  Google Scholar 

  55. Q. Ye, J. Li, X. Liu, X. Xu, F. Wang, B. Li, Surface pattern of NiCo hydroxide nanoplate arrays electrocatalysts for the oxygen evolution reaction. J. Power Sources 412, 10–17 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.075

    Article  CAS  Google Scholar 

  56. H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15(2), 1421–1427 (2015). https://doi.org/10.1021/nl504872s

    Article  CAS  PubMed  Google Scholar 

  57. C. Qiu, J. Jiang, L. Ai, When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 8(1), 945–951 (2016). https://doi.org/10.1021/acsami.5b10634

    Article  CAS  PubMed  Google Scholar 

  58. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, Efficient water oxidation using nanostructured alpha-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136(19), 7077–7084 (2014). https://doi.org/10.1021/ja502128j

    Article  CAS  PubMed  Google Scholar 

  59. K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially sponsored by the National Natural Science Foundation of China (52076126) and the Natural Science Foundation of Shanghai (18ZR1416200). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of the SEM, BET, and XPS tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daolei Wang or Jiang Wu.

Ethics declarations

Consent for Publication

This manuscript is original. All authors have approved the submission of the manuscript. This article has not been published and is not being considered for publication elsewhere.

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2865 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Ma, X., Wang, D. et al. 3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis 13, 873–886 (2022). https://doi.org/10.1007/s12678-022-00757-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00757-z

Keywords

Navigation