Skip to main content
Log in

Biological Network Analyses of WRKY Transcription Factor Family in Soybean (Glycine max) under Low Phosphorus Treatment

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

WRKY transcription factor (TF) is plant specific genes and play essential roles involved in biotic and abiotic stress tolerance. Gene co-expression network (GCN) analysis is effective tool for the interpretation of transcriptomic data. In this study, a co-expression network of 152 WRKY genes using publicly available microarray data (GSE78242) was constructed under low phosphate (Pi) treatment in soybean (Glycine max). A total of 149 nodes and 641 edges were obtained from CGN and seven seed genes were identified. Particularly, Glyma.19G094100 and Glyma.16G054400 seed genes (orthologue to Arabidopsis WRKY75) were found to have a direct connection to P deficiency. Promotor analyses of seed genes revealed the variations in the number of cis-regulatory elements (CREs) ranging from 80 to 137 with a total of 835 CREs. The methylation profile of Glyma.04G218700 (orthologue to Arabidopsis WRKY51) was found higher than other seed genes. As a result, our findings can be used as a scientific basis to cope with P deficiency in soybean as well as abiotic stress tolerance. In addition, these findings of this study may prove the crop improvement studies in future, especially genetically engineered soybean plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R, Barabasi AL. 2002. Statistical mechanics of complex networks. Rev. Modern Phys. 74: 47–97

    Article  Google Scholar 

  • Bader GD, Hogue, CW. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2. doi: 10.1186/1471-2105-4-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav. 9: e27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M, Huang QQ, Pearson JK, Hsieh TF, An YC, Xiao W. 2018. Dynamic DNA methylation in plant growth and development. Int. J. Mol. Sci. 19:2144

    Article  PubMed Central  CAS  Google Scholar 

  • Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. 2010. Roles of Arabidopsis WRKY 18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol. 10:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. 2017. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29: 1425–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta Gene Regul. Mech. 1819: 120–128

    Article  CAS  Google Scholar 

  • Chou KC, Shen HB. 2007. Recent progress in protein subcellular location prediction. Anal. Biochem. 370: 1–16

    Article  CAS  PubMed  Google Scholar 

  • Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TYI, Chang WC. 2015. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44: D1154–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Haeseleer P. 2005. How does gene expression clustering work? Nat. Biotechnol. 23: 1499–501

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199–206

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazor GA, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES. 2000. DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10: 217–223

    Article  CAS  PubMed  Google Scholar 

  • Gao QM, Venugopal S., Navarre D, Kachroo A. 2011. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant, 464–476

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server, In: JM Walker, ed., The Proteomics Protocols Handbook, Humana Press pp. 571–607

    Chapter  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40: D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98

    CAS  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al. 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40: D1202–10

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Kariola T, Tapio Palva E. 2006. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 46: 477–491

    Article  CAS  PubMed  Google Scholar 

  • Li R, Liang F, Li M, Zou D, Sun S, Zhao Y, Zhao W, Bao Y, Xiao J, Zhang Z. 2018. MethBank 3.0: a database of DNA methylomes across a variety of species. Nucleic Acids Res. 46: D288–D295

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH. 2010. Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol. Plant 139: 129–143

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE. 2010. Transcriptional reprogramming regulated by WRKY 18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 64: 912–923

    Article  CAS  PubMed  Google Scholar 

  • Raghothama KG. 1999. Phosphate acquisition. Annu. Rev. Plant Biol. 50: 665–693

    Article  CAS  Google Scholar 

  • Rhee SY, Mutwil M. 2014. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19: 212–221

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends Plant Sci. 15: 247–258

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takuno S, Ran JH, Gaut BS. 2016. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2: 15222

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP. 2007. Genomic and genetic control of phosphate stress in legumes. Plant Physiol. 144: 594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toronen P, Medlar A, Holm L. 2018. PANNZER2: A rapid functional annotation webserver. Nucl. Acids Res. 46: W84–W88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhaes JP. 2018. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 19: 575–592

    PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157: 423–447

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang J, Yang Y, Du W, Zhang D, Yu D, Cheng H. 2016. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. BMC Genomics 17: 192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, et al. 2003. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26: 1515–1523

    Article  CAS  Google Scholar 

  • Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Altschuler SJ. 2002. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nature Genet. 31: 255

    Article  CAS  PubMed  Google Scholar 

  • Yadav BS, Mani A. 2019. Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network. Physiol. Mol. Biol. Plants 25: 113, https://doi.org/10.1007/s12298-018-0625-1

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhou Y, Chi Y, Fan B, Chen Z. 2017. Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean Cyst nematode. Sci. Rep. 7: 17804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youens-Clark K, Buckler E, Casstevens T, Chen C, Declerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, et al. 2011. Gramene database in 2010: updates and extensions. Nucleic Acids Res. 39: D1085–94

    Article  CAS  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK. 2006. Prediction of protein subcellular localization. Proteins 64: 643–651

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Wang G, Zhang Y, Hu X, Pi E, Zhu Y, Wang H, Du L. 2016. Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil 398: 207–227

    Article  CAS  Google Scholar 

  • Zuo YC, Li QZ. 2011. Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility. Genomics 97: 112–20

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Additional information

Compliance with ethical standards Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, F., Filiz, E. Biological Network Analyses of WRKY Transcription Factor Family in Soybean (Glycine max) under Low Phosphorus Treatment. J. Crop Sci. Biotechnol. 23, 127–136 (2020). https://doi.org/10.1007/s12892-019-0102-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-019-0102-0

Key words

Navigation