Skip to main content
Log in

Changes in Dust Activity in Spring over East Asia under a Global Warming Scenario

  • Review Paper
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Dust activity not only influences human health through dust storms but also affects climate at local and regional scales through the direct effects of dust aerosols on both solar and longwave radiative heating. In this study, based on dust simulations from seven Coupled Model Intercomparison Project Phase 5 (CMIP5) models, the spatial and temporal changes in dust activity over East Asia under a Representative Concentration Pathway 8.5 global warming scenario were examined for the periods of 2016–2035 (P1), 2046–2065 (P2) and 2080–2099 (P3). The results show that the multimodel ensemble mean (MME) of the CMIP5 models largely captures the spatial distribution of dust emissions and dust optical depth (DOD) over East Asia during 1986–2005 (P0). The MME reproduces the increasing trend in dust emissions and DOD over dust sources in East Asia during P0. Accompanying emission reductions during P1 to P3, the DOD simultaneously decreases, and the evident DOD decline can also be found over downwind areas in eastern China and the Korean Peninsula. Simulations project increases in precipitation and the LAI (leaf area index). Simultaneously, the weakened East Asian trough leads to anomalous southerly winds and lower wind speeds at the surface. All these results indicate unfavorable conditions for dust emissions over the sources regions, resulting in a decreased DOD over East Asia during P1 to P3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 

Similar content being viewed by others

References

  • Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V.V., Lee, W.G., Merryfield, W.J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38(5), (2011). https://doi.org/10.1029/2010gl046270

  • Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, D.H., Roelandt, C., Seierstad, I.A., Hoose, C., Kristjánsson, J.E.: The norwegian earth system model, noresm1-m part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6(3), 687–720 (2013). https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Chen, S., Huang, J., Zhao, C., Qian, Y., Leung, L.R., Yang, B.: Modeling the transport and radiative forcing of taklimakan dust over the tibetan plateau: a case study in the summer of 2006. J. Geophys. Res. Atmos. 118(2), 797–812 (2013). https://doi.org/10.1002/jgrd.50122

    Article  Google Scholar 

  • Chen, S., Huang, J., Qian, Y., Zhao, C., Kang, L., Yang, B., Wang, Y., Liu, Y., Yuan, T., Wang, T., Ma, X., Zhang, G.: An overview of mineral dust modeling over east asia. J. Meteorol. Res. 31(4), 633–653 (2017). https://doi.org/10.1007/s13351-017-6142-2

    Article  Google Scholar 

  • Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., Lin, S.-J.: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res: Atmos. 106(D17), 20255–20273 (2001). https://doi.org/10.1029/2000jd000053

    Article  Google Scholar 

  • Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4(4), 1051–1075 (2011). https://doi.org/10.5194/gmd-4-1051-2011

  • Croft, B., Lohmann, U., von Salzen, K.: Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model. Atmos. Chem. Phys. 5(7), 1931–1949 (2005). https://doi.org/10.5194/acp-5-1931-2005

    Article  Google Scholar 

  • Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M., Golaz, J.C., Ginoux, P., Lin, S.J., Schwarzkopf, M.D., Austin, J., Alaka, G., Cooke, W.F., Delworth, T.L., Freidenreich, S.M., Gordon, C.T., Griffies, S.M., Held, I.M., Hurlin, W.J., Klein, S.A., Knutson, T.R., Langenhorst, A.R., Lee, H.C., Lin, Y., Magi, B.I., Malyshev, S.L., Milly, P.C.D., Naik, V., Nath, M.J., Pincus, R., Ploshay, J.J., Ramaswamy, V., Seman, C.J., Shevliakova, E., Sirutis, J.J., Stern, W.F., Stouffer, R.J., Wilson, R.J., Winton, M., Wittenberg, A.T., Zeng, F.: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component am3 of the gfdl global coupled model cm3. J. Clim. 24(13), 3484–3519 (2011). https://doi.org/10.1175/2011jcli3955.1

    Article  Google Scholar 

  • Gautam, R., Hsu, N.C., Lau, W.K.M., Yasunari, T.J.: Satellite observations of desert dust-induced himalayan snow darkening. Geophys. Res. Lett. 40(5), 988–993 (2013). https://doi.org/10.1002/grl.50226

    Article  Google Scholar 

  • Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A., Gu, W., Kim, G.K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30(13), 5419–5454 (2017). https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Ginoux, P., Clarisse, L., Clerbaux, C., Coheur, P.F., Dubovik, O., Hsu, N.C., Van Damme, M.: Mixing of dust and nh3 observed globally over anthropogenic dust sources. Atmos. Chem. Phys. 12(16), 7351–7363 (2012). https://doi.org/10.5194/acp-12-7351-2012

    Article  Google Scholar 

  • Han, Y., Wang, K., Liu, F., Zhao, T., Yin, Y., Duan, J., Luan, Z.: The contribution of dust devils and dusty plumes to the aerosol budget in western China. Atmos. Environ. 126, 21–27 (2016). https://doi.org/10.1016/j.atmosenv.2015.11.025

    Article  Google Scholar 

  • Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., Ayers, J.K.: Long-range transport and vertical structure of asian dust from calipso and surface measurements during pacdex. J. Geophys. Res. 113(D23), (2008). https://doi.org/10.1029/2008jd010620

  • Huang, J., Wang, T., Wang, W., Li, Z., Yan, H.: Climate effects of dust aerosols over east asian arid and semiarid regions. J. Geophys. Res. Atmos. 119(19), 11,398–11,416 (2014). https://doi.org/10.1002/2014jd021796

    Article  Google Scholar 

  • Huang, J., Yu, H., Guan, X., Wang, G., Guo, R.: Accelerated dryland expansion under climateăchange. Nat. Clim. Chang. 6(2), 166–171 (2016). https://doi.org/10.1038/nclimate2837

    Article  Google Scholar 

  • Kaufman, Y.J.: Dust transport and deposition observed from the terra-moderate resolution imaging spec-troradiometer (modis) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110(D10), (2005). https://doi.org/10.1029/2003jd004436

  • Kim, T., Boo, K.O., Lee, J., Cho, C.: Analysis of the future emission changes in mineral dust aerosol in cmip5 related to bare soil and soil moisture conditions. J. Clim. Res. 9(1), 33–51 (2014). https://doi.org/10.14383/cri.2014.9.1.33

    Article  Google Scholar 

  • Kirkevåg, A., Iversen, T., Seland, H.C., Kristjánsson, J.E., Struthers, H., Ekman, A.M.L., Ghan, S., Griesfeller, J., Nilsson, E.D., Schulz, M.: Aerosolclimate interactions in the norwegian earth system model noresm1-m. Geosci. Model Dev. 6(1), 207–244 (2013). https://doi.org/10.5194/gmd-6-207-2013

    Article  Google Scholar 

  • Lau, K.M., Kim, K.M., Yang, S.: Dynamical and Boundary Forcing Characteristics of Regional Components of the Asian Summer Monsoon. J. Clim. 13(14), 2461–2482 (2000). https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2

  • Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen, A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M., Siefert, R.L.: Atmospheric iron deposition: global distribution, variability, and human perturbations. Ann. Rev. Mar. Sci. 1, 245–278 (2009). https://doi.org/10.1146/annurev.marine.010908.163727https://www.ncbi.nlm.nih.gov/pubmed/21141037

    Article  Google Scholar 

  • Mahowald, N.M., Scanza, R., Brahney, J., Goodale, C.L., Hess, P.G., Moore, J.K., Neff, J.: Aerosol deposition impacts on land and ocean carbon cycles. Curr. Clim. Chang. Rep. 3(1), 16–31 (2017). https://doi.org/10.1007/s40641-017-0056-z

    Article  Google Scholar 

  • Mao, R., Gong, D., Bao, J., Fan, Y.: Possible influence of arctic oscillation on dust storm frequency in North China. J. Geogr. Sci. 21(2), 207–218 (2011). https://doi.org/10.1007/s11442-011-0839-4

    Article  Google Scholar 

  • Mao, R., Hu, Z., Zhao, C., Gong, D.Y., Guo, D., Wu, G.: The source contributions to the dust over the tibetan plateau: a modelling analysis. Atmos. Environ. 214, 116859 (2019). https://doi.org/10.1016/j.atmosenv.2019.116859

    Article  Google Scholar 

  • Marticorena, B., Bergametti, G.: Modeling the atmospheric dust cycle 1, design of a soil-derived dust emission scheme. J. Geophys. Res.-Atmos. 100, 1641516430 (1995)

    Article  Google Scholar 

  • Pu, B., Ginoux, P.: How reliable are cmip5 models in simulating dust optical depth? Atmos. Chem. Phys. 18(16), 12491–12510 (2018). https://doi.org/10.5194/acp-18-12491-2018

    Article  Google Scholar 

  • Qian, L.S.Q.W.-H., Shi, S.Y.: Variations of the dust storm in China and its climatic control. J. Clim. 15, 1216–1229 (2002)

    Article  Google Scholar 

  • Randles, C.A., Da Silva, A.M., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J.: The merra-2 aerosol reanalysis, 1980 - onward, part i: system description and data assimilation evaluation. J. Clim. 30(17), 6823–6850 (2017). https://doi.org/10.1175/JCLI-D-16-0609.1https://www.ncbi.nlm.nih.gov/pubmed/29576684

    Article  Google Scholar 

  • Reader, M.C., Fung, I., McFarlane, N.: The mineral dust aerosol cycle during the last glacial maximum. J. Geophys. Res. Atmos. 104(D8), 9381–9398 (1999). https://doi.org/10.1029/1999jd900033

    Article  Google Scholar 

  • Rind, D.: Latitudinal temperature gradients and climate change. J. Geophys. Res. Atmos. 103(D6), 5943–5971 (1998). https://doi.org/10.1029/97jd03649

    Article  Google Scholar 

  • Seland, I.T., KirkevÅG, A.L.F., Storelvmo, T.: Aerosol-climate interactions in the cam-Oslo atmospheric gcm and investigation of associated basic shortcomings. Tellus A. 60(3), 459–491 (2008). https://doi.org/10.1111/j.1600-0870.2008.00318.x

    Article  Google Scholar 

  • Shao, Y., Dong, C.H.: A review on east asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 52(1–4), 1–22 (2006). https://doi.org/10.1016/j.gloplacha.2006.02.011

    Article  Google Scholar 

  • Shao, Y., Klose, M., Wyrwoll, K.H.: Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 118(19), 11,107–11,118 (2013). https://doi.org/10.1002/jgrd.50836

    Article  Google Scholar 

  • Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Higurashi, A., Nakajima, T.: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res. Atmos. 105(D14), 17853–17873 (2000). https://doi.org/10.1029/2000jd900265

    Article  Google Scholar 

  • Tan, S., Li, J., Gao, H., Wang, H., Che, H., Chen, B.: Satellite-observed transport of dust to the East China Sea and the north pacific subtropical gyre: contribution of dust to the increase in chlorophyll during spring 2010. Atmosphere. 7(11), (2016). https://doi.org/10.3390/atmos7110152

  • Tang, Y., Han, Y., Liu, Z.: Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in east asiaan analysis using a new parameterization scheme for dust devils. Atmos. Environ. 182, 225–233 (2018). https://doi.org/10.1016/j.atmosenv.2018.03.050

    Article  Google Scholar 

  • Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001). https://doi.org/10.1029/2000jd900719

    Article  Google Scholar 

  • Tegen, I., Werner, M., Harrison, S.P., Kohfeld, K.E.: Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 31(5), (2004). https://doi.org/10.1029/2003gl019216

  • Uno, I., Wang, Z., Chiba, M., Chun, Y.S., Gong, S.L., Hara, Y., Jung, E., Lee, S.S., Liu, M., Mikami, M., Music, S., Nickovic, S., Satake, S., Shao, Y., Song, Z., Sugimoto, N., Tanaka, T., Westphal, D.L.: Dust model intercomparison (dmip) study over asia: overview. J. Geophys. Res. 111(D12), (2006). https://doi.org/10.1029/2005jd006575

  • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., Kawamiya, M.: Miroc-esm 2010: model description and basic results of cmip5-20c3m experiments. Geosci. Model Dev. 4(4), 845–872 (2011). https://doi.org/10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Wu, C., Lin, Z., Liu, X., Li, Y., Lu, Z., Wu, M.: Can climate models reproduce the decadal change of dust aerosol in east asia? Geophys. Res. Lett. 45(18), 9953–9962 (2018). https://doi.org/10.1029/2018gl079376

    Article  Google Scholar 

  • Wu, M., Liu, X., Yang, K., Luo, T., Wang, Z., Wu, C., Zhang, K., Yu, H., Darmenov, A.: Modeling dust in east asia by cesm and sources of biases. J Geophys Res Atmos. 124(14), 8043–8064 (2019). https://doi.org/10.1029/2019JD030799https://www.ncbi.nlm.nih.gov/pubmed/32637292

    Article  Google Scholar 

  • Yin, Y., Chen, L.: The effects of heating by transported dust layers on cloud and precipitation: a numerical study. Atmos. Chem. Phys. 7, 34973505 (2007)

    Article  Google Scholar 

  • Zhang, X.Y., Arimoto, R., Zhu, G.H., Chen, T., Zhang, G.Y.: Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus B 50(4), 317–330 (1998). https://doi.org/10.1034/j.1600-0889.1998.t01-3-00001.x

    Article  Google Scholar 

  • Zhang, L., Hay, W.W., Wang, C., Gu, X.: The evolution of latitudinal temperature gradients from the latest cretaceous through the present. Earth Sci. Rev. 189, 147–158 (2019). https://doi.org/10.1016/j.earscirev.2019.01.025

    Article  Google Scholar 

  • Zhao, T.L.: Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ace-asia 2001: implications for trans-pacific transport. J. Geophys. Res. 108(D23), (2003). https://doi.org/10.1029/2002jd003363

Download references

Acknowledgements

We thank Prof. Yaping Shao and Dr. Martina Klose for analyzing the dust observations from the global Met Office Integrated Data Archive System, UK Meteorological Office. This research was supported by the National Key R&D Program of China (2016YFA0602401). Mao was supported by the National Natural Science Foundation of China (41571039, 41730639). Q. Zong is supported by the Key Laboratory of Environmental Change and Natural Disaster and Engineering Research Center of Desertification and Blownsand Control. We would like to thank the high-performance computing support from the Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University [https://gda.bnu.edu.cn/].

CMIP5 data is downloaded from https://esgf-node.llnl.gov/search/cmip5/ (last access February 2020).MERRA-2 Reanalysis data is download from https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl?LOOKUPID_List=M2I3NVAER (last access February 2019). Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current) is downloaded from http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 (last access February 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Mao.

Additional information

Responsibility Editor: Yun Gon Lee

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 8291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Q., Mao, R., Gong, DY. et al. Changes in Dust Activity in Spring over East Asia under a Global Warming Scenario. Asia-Pacific J Atmos Sci 57, 839–850 (2021). https://doi.org/10.1007/s13143-021-00224-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-021-00224-7

Keywords

Navigation