Skip to main content

Advertisement

Log in

The potential role of angiopoietin-like protein-8 in type 2 diabetes mellitus: a possibility for predictive diagnosis and targeted preventive measures?

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Background

Previous studies showed altered angiopoietin-like protein-8 (ANGPTL-8) circulating levels in type 2 diabetes mellitus (DM). Whether or not the alteration in ANGPTL-8 level can be a predictive maker for increased DM risk remains unclear.

Aim

Investigating possible role of ANGPTL-8 as a risk predictor of type2 DM, in addition to a set of factors likely to affect ANGPTL-8 level.

Methods

One hundred recently diagnosed persons with type 2 DM and 100 sex- and age-matched healthy controls were enrolled. Exclusion criteria included type 1 DM, acute infections, history of chronic kidney disease, malignancy, and blood loss or transfusion. Serum levels of ANGPTL-8, blood pressure, weight, height, glycosylated hemoglobin (HbA1c), fasting blood glucose, cystatin C, lipid profile, liver, and kidney function tests were assessed. The independent relationship between DM and ANGPTL-8 was tested in the unadjusted and multiple-adjusted regression models.

Results

Serum ANGPTL-8 levels showed significant elevation among persons with vs. without DM (p = 0.006), positive correlation with HbA1c (p < 0.001), and negative correlation with estimated GFR (eGFR) (p = 0.003) but no significant correlation to fasting glucose level. In the unadjusted model, patients in the third tertile of ANGPTL-8 had 4 times risk of DM (OR 4.03; 95% CI = 1.37–11.84). Data adjustment for cardiovascular diseases, smoking, body mass index, systolic blood pressure, alanine transaminase (ALT), and low-density lipoprotein (LDL) increased the direct relationship between ANGPTL-8 and DM (OR 6.26; 95% CI = 1.21–32.50). However, the risk significantly decreased after adjustment of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) eGFR creatinine-cystatin (OR 2.17; 95% CI = 0.10–49.84).

Conclusion

This study highlights a possible predictive role of ANGPTL-8 in diabetic complications, particularly nephropathy. Larger prognostic studies are needed to validate the cause-effect relationship between ANGPTL-8 and deteriorated kidney functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Duarte AA, Mohsin S, Golubnitschaja O. Diabetes care in figures: current pitfalls and future scenario. EPMA J. 2018;9(2):125–31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. International diabetes federation. Diabetes atlas, 8th edn. 2017. Available at : www.diabetesatlas.org. Accessed 15 June 2019.

  3. Golubnitschaja O, Baban B, Boniolo G, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Golubnitschaja O. Advanced diabetes care: three levels of prediction, prevention & personalized treatment. Curr Diabetes Rev. 2010;6(1):42–51.

    Article  PubMed  Google Scholar 

  5. Suwannaphant K, Laohasiriwong W, Puttanapong N, et al. Association between socioeconomic status and diabetes mellitus: the National Socioeconomics Survey, 2010 and 2012. J Clin Diagn Res. 2017;11(7):LC18–22.

    PubMed  PubMed Central  Google Scholar 

  6. Ge S, Xu X, Zhang J, et al. Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study. EPMA J. 2019;10(1):65–72.

    Article  PubMed  Google Scholar 

  7. Soliman N, El-Shabrawi M, Omar S. DNA fragmentation damage as a predictive marker for diabetic nephropathy in type II diabetes mellitus. J Endocrinol Metab Diabetes S Afr. 2018;23(2):32–5.

    Google Scholar 

  8. Saadeldin MK, Elshaer SS, Emara IA, et al. Serum sclerostin and irisin as predictive markers for atherosclerosis in Egyptian type II diabetic female patients: a case control study. PLoS One. 2018;13(11):e0206761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee H, Park T, Kim B. Metabolic markers predictive of prediabetes in the Korean population. Diabetes. 2018;67(Supplement 1). https://doi.org/10.2337/db18-201-LB.

  10. Golubnitschaja O, Costigliola V. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gupta M, Singh JP. Correlation of microalbuminuria with glycosylated haemoglobin in patients of diabetes having nephropathy. Int J Adv Med. 2017;4(3):805–8.

    Article  Google Scholar 

  12. Sena CM, Bento CF, Pereira P, et al. Diabetes mellitus: new challenges and innovative therapies. EPMA J. 2010;1(1):138–63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Golubnitschaja O, Costigliola V. EPMA summit 2014 under the auspices of the presidency of Italy in the EU: professional statements. EPMA J. 2015;6(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):E334–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quagliarini F, Wang Y, Kozlitina J, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci U S A. 2012;109(48):19751–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun. 2012;424(4):786–92.

    Article  CAS  PubMed  Google Scholar 

  17. Fu Z, Yao F, Abou-Samra AB, et al. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem Biophys Res Commun. 2013;430(3):1126–31.

    Article  CAS  PubMed  Google Scholar 

  18. Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell. 2013;153(4):747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo M, Peng D. ANGPTL8: an important regulator in metabolic disorders. Front Endocrinol (Lausanne). 2018;9:169.

    Article  Google Scholar 

  20. Maurer L, Schwarz F, Fischer-Rosinsky A, et al. Renal function is independently associated with circulating betatrophin. PLoS One. 2017;12(3):e0173197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang R, Abou-Samra AB. Emerging roles of lipasin as a critical lipid regulator. Biochem Biophys Res Commun. 2013;432(3):401–5.

    Article  CAS  PubMed  Google Scholar 

  22. Yi P, Park JS, Melton DA. Retraction notice to: betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell. 2017;168(1–2):326.

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Liu D, Li L, et al. Circulating betatrophin in patients with type 2 diabetes: a meta-analysis. J Diabetes Res. 2016;2016:6194750.

    PubMed  Google Scholar 

  24. Leiherer A, Muendlein A, Geiger K, et al. Betatrophin is associated with type 2 diabetes and markers of insulin resistance. Diabetes. 2018;67(Supplement 1). https://doi.org/10.2337/db18-2445-PUB.

  25. Gomez-Ambrosi J, Pascual E, Catalan V, et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99(10):E2004–9.

    Article  CAS  PubMed  Google Scholar 

  26. Gokulakrishnan K, Manokaran K, Pandey GK, et al. Relationship of betatrophin with youth onset type 2 diabetes among Asian Indians. Diabetes Res Clin Pract. 2015;109(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  27. Fenzl A, Itariu BK, Kosi L, et al. Circulating betatrophin correlates with atherogenic lipid profiles but not with glucose and insulin levels in insulin-resistant individuals. Diabetologia. 2014;57(6):1204–8.

    Article  CAS  PubMed  Google Scholar 

  28. Espes D, Lau J, Carlsson PO. Increased circulating levels of betatrophin in individuals with long-standing type 1 diabetes. Diabetologia. 2014;57(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  29. Fu Z, Berhane F, Fite A, et al. Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Sci Rep. 2014;4:5013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang R. Abou-Samra AB. A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol. 2014;13:133.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu H, Sun W, Yu S, et al. Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diabetes Care. 2014;37(10):2718–22.

    Article  CAS  PubMed  Google Scholar 

  32. Tuhan H, Abaci A, Anik A, et al. Circulating betatrophin concentration is negatively correlated with insulin resistance in obese children and adolescents. Diabetes Res Clin Pract. 2016;114:37–42.

    Article  CAS  PubMed  Google Scholar 

  33. Battal F, Turkon H, Aylanc N, et al. Investigation of blood Betatrophin levels in obese children with non-alcoholic fatty liver disease. Pediatr Gastroenterol Hepatol Nutr. 2018;21(2):111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ebert T, Kralisch S, Hoffmann A, et al. Circulating angiopoietin-like protein 8 is independently associated with fasting plasma glucose and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2014;99(12):E2510–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chen CC, Susanto H, Chuang WH, et al. Higher serum betatrophin level in type 2 diabetes subjects is associated with urinary albumin excretion and renal function. Cardiovasc Diabetol. 2016;15:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cioms W. International ethical guidelines for epidemiological studies. Geneva. 2009.

  37. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2017;39(Suppl 1):S13–22.

    Google Scholar 

  38. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2013;367(1):20–9.

    Article  CAS  Google Scholar 

  39. Grambsch PM, Therneau TM, Fleming TR. Diagnostic plots to reveal functional form for covariates in multiplicative intensity models. Biometrics. 1995;51(4):1469–82.

    Article  CAS  PubMed  Google Scholar 

  40. Pan R, Zhang H, Yu S, et al. Betatrophin for diagnosis and prognosis of mothers with gestational diabetes mellitus. J Int Med Res. 2019;47(2):710–7.

    Article  CAS  PubMed  Google Scholar 

  41. Abu-Farha M, Abubaker J, Al-Khairi I, et al. Higher plasma betatrophin/ANGPTL8 level in type 2 diabetes subjects does not correlate with blood glucose or insulin resistance. Sci Rep. 2015;5:10949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee SH, Rhee M, Kwon HS, et al. Serum betatrophin concentrations and the risk of incident diabetes: a nested case-control study from Chungju metabolic disease cohort. Diabetes Metab J. 2018;42(1):53–62.

    Article  PubMed  Google Scholar 

  43. Fortwaengler K, Parkin CG, Neeser K, et al. Description of a new predictive modeling approach that correlates the risk and associated cost of well-defined diabetes-related complications with changes in glycated hemoglobin (HbA1c). J Diabetes Sci Technol. 2017;11(2):315–23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Penno G, Solini A, Bonora E, et al. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2013;36(8):2301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo K, Lu J, Yu H, et al. Serum betatrophin concentrations are significantly increased in overweight but not in obese or type 2 diabetic individuals. Obesity (Silver Spring). 2015;23(4):793–7.

    Article  CAS  Google Scholar 

  46. Yamada H, Saito T, Aoki A, et al. Circulating betatrophin is elevated in patients with type 1 and type 2 diabetes. Endocr J. 2015;62(5):417–21.

    Article  CAS  PubMed  Google Scholar 

  47. Ebert T, Kralisch S, Wurst U, et al. Betatrophin levels are increased in women with gestational diabetes mellitus compared to healthy pregnant controls. Eur J Endocrinol. 2015;173(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  48. Mahmood D, Makoveichuk E, Nilsson S, et al. Response of angiopoietin-like proteins 3 and 4 to hemodialysis. Int J Artif Organs. 2014;37(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  49. Pfau D, Bachmann A, Lossner U, et al. Serum levels of the adipokine chemerin in relation to renal function. Diabetes Care. 2010;33(1):171–3.

    Article  CAS  PubMed  Google Scholar 

  50. Stein S, Bachmann A, Lossner U, et al. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care. 2009;32(1):126–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Merabet E, Dagogo-Jack S, Coyne DW, et al. Increased plasma leptin concentration in end-stage renal disease. J Clin Endocrinol Metab. 1997;82(3):847–50.

    CAS  PubMed  Google Scholar 

  52. Golubnitschaja O. Time for new guidelines in advanced diabetes care: paradigm change from delayed interventional approach to predictive, preventive & personalized medicine. EPMA J. 2010;1(1):3–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the efforts of the medical postgraduate student Mohamed Abd Allah ElKelany, in data collection and entry.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception of idea, study design, laboratory investigations, interpretation of results, writing and revising the manuscript, providing intellectual content of critical importance to the work described, and final approval of the version to be published. In addition, Dr. Yasmine Amr Issa carried out all laboratory investigations, Dr. Samar Samy Abd ElHafeez was responsible for statistical analysis, and Dr. Noha Gaber Amin executed the recruitment, examination, and data collection of patients. All authors are also accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Yasmine Amr Issa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval for human studies

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Alexandria Faculty of Medicine Ethics of the research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, Y.A., Abd ElHafeez, S.S. & Amin, N.G. The potential role of angiopoietin-like protein-8 in type 2 diabetes mellitus: a possibility for predictive diagnosis and targeted preventive measures?. EPMA Journal 10, 239–248 (2019). https://doi.org/10.1007/s13167-019-00180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-019-00180-3

Keywords

Navigation