Skip to main content
Log in

Arbuscular mycorrhizal fungi enhance antioxidant capacity of in vitro propagated garden thyme (Thymus vulgaris L.)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Garden thyme (Thymus vulgaris L., Lamiaceae) is an important aromatic herb used for its medicinal values including antioxidant and antimicrobial properties. The present study was performed to analyze the changes in natural antioxidants after inoculation of in vitro propagated garden thyme plants with arbuscular mycorrhizal fungi (AMF). An efficient and low-cost protocol for large-scale multiplication of this aromatic plant was developed. The explants were cultured on full and half strength Murashige and Skoog (MS) medium containing indole-3-butyric acid (IBA). The maximum number of shoots and roots was obtained on ½ MS medium supplemented with 0.1 mg L−1 IBA after 4 weeks of culture. The successfully adapted in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). Plants were then transferred into field conditions. Mycorrhizal fungi enhanced the activity of some soil enzymes, acid and alkaline phosphatase, urease as well as the levels of extractable glomalin-related proteins in plant rhizosphere. Arbuscular mycorrhizal associations with higher plants promote the accumulation of antioxidant metabolites such as phenols and flavonoids and increase the activity of antioxidant enzymes. The results from the present study suggest enhanced antioxidant capacity of the inoculated T. vulgaris plants which was due mainly to increased accumulation of phenolic compounds (total phenols and flavonoids) together with stimulation of the activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

APX:

Ascorbate peroxidase

CAT:

Catalase

DPPH :

2,2-diphenylpycril-hydrazyl

FRAP:

Ferric ion reducing antioxidant power

GPO:

Guaiacol peroxidase

MS:

Murashige and Skoog

NM:

Non-mycorrhizal plants

SOD:

Superoxide dismutase

BA:

6-benzyladenine

NAA:

ɑ-naphtalene acetic acid

IBA:

Indole-3-butyric acid

IAA:

Indole-3-acetic acid

References

  • Abdel Latefa AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  Google Scholar 

  • Affonso VR, Bizzo HR, Lage CLS, Sato A (2009) Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris L. J Agric Food Chem 57:6392–6395. doi:10.1021/jf900816c

    Article  CAS  PubMed  Google Scholar 

  • Ayari B, Riahi L, Landoulsi A (2013) Variability of phenolic contents in methanolic extracts of Origanum majorana L. organs and effect on antioxidant and antimicrobial activities. Int J Agron Plant Prod 4:2806–2815

    Google Scholar 

  • Bazylko A, Strzelecka H (2007) A HPTLC densitometric determination of luteolin in Thymus vulgaris and its extracts. Fitotherapia 78:391–395. doi:10.1016/j.fitote.2007.01.007

    Article  CAS  Google Scholar 

  • Beers F, Sizer IF (1952) A spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Benavente-Garćıa O, Castillo J, Lorente J, Ortũno A, Del Río JA (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68:457–462. doi:10.1016/S0308-8146(99)00221-6

    Article  Google Scholar 

  • Benzie I, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.6292

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427. doi:10.1016/0038-0717(82)90099-2

    Article  CAS  Google Scholar 

  • Coelho N, Gonçalves G-BME, Romano A (2012) Establishment of an in vitro propagation protocol for Thymus lotocephalus, a rare aromatic species of the Algarve (Portugal). Plant Growth Regul 66:69–74. doi:10.1007/s10725-011-9630-x

    Article  CAS  Google Scholar 

  • Daneshvar-Royandezagh S, Khawar KM, Ozcan S (2009) In vitro micropropagation of garden thyme (Thymbra spicata L. var. spicata L.) collected from southeastern Turkey using cotyledon node. Biotechnol Equip 23:1319–1321. doi:10.1080/13102818.2009.10817661

    Article  Google Scholar 

  • Delcheh SK, Kashefi B, Mohammadhassan R (2014) A review optimization of tissue culture medium medicinal plant: thyme. Int J Farm Alli Sci 3:1015–1019

    Google Scholar 

  • Dick WA, Tabatabai MA (1984) Kinetic parameters of phosphatases in soils and organic waste materials. Soil Sci 137:7–15

    Article  CAS  Google Scholar 

  • Dolatabadi HK, Goltapeh EM, Moieni A, Jaimand K, Sardrood BP, Varma A (2011) Effect of Piriformospora indica and Sebacina vermifera on plant growth and essential oil yield in Thymus vulgaris in vitro and in vivo experiments. Symbiosis 53:29–35. doi:10.1007/s13199-010-0104-0

    Article  CAS  Google Scholar 

  • Farooqi AHA, Khan A, Sharma S (2003) Effect of kinetin and chlormequat chloride on growth, leaf abscission and essential oil yield in Mentha arvensis. Indian Perfumer 47:359–363

    CAS  Google Scholar 

  • Frankenberger WT, Dick WA (1983) Relationship between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am Proc J 47:945–951

    Article  CAS  Google Scholar 

  • Fu L, Xu BT, Xu XR, Gan RY, Zhan Y, Xia EQ, Li HB (2011) Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 129:345–350. doi:10.1016/j.foodchem.2011.04.079

    Article  CAS  Google Scholar 

  • Geneva M, Stancheva I, Boychinova M, Mincheva N, Yonova P (2010) Effects of foliar fertilisation and arbuscular mycorrhizal colonisation on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702. doi:10.1002/jsfa.3871

    CAS  PubMed  Google Scholar 

  • Gianfreda L (2015) Enzymes of importance to rhizosphere process. J Soil Sci Plant Nutr 15:283–306. doi:10.4067/S0718-95162015005000022

    CAS  Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil, Series soil biology, vol 8. Springer-Verlag, Berlin, pp 257–311. doi:10.1007/3-540-29449-X_12

    Chapter  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Hoffmann E, Teicher K (1961) Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivit/at in B6den. Z Pflanzenernaehr Dtingung Bodenkd 95:55–63

    Article  Google Scholar 

  • Hosseini BB, Khoshkhoy M (2005) Effects of media and growth regulators on garden thyme (Thymus vulgaris L.) micropropagation. Iran J Hortic Sci Technol 6:61–68

    Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2015) Aspects of mycorrhizal colonization in adaptation of sweet marjoram (Origanum majorana L.) grown on industrially polluted soil. Turk J Biol 39:461–468. doi:10.3906/biy-1408-47

    Article  CAS  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63. doi:10.1016/j.apsoil.2016.01.008

    Article  Google Scholar 

  • Jackson NE, Franklin RE, Miller RH (1972) Effects of vesicular-arbuscular mycorrhizae on growth and phosphorus content of three agronomic crops. Soil Sci Soc Am Proc 36:64–67

    Article  Google Scholar 

  • Justesen U, Knuthsen P (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 73:245–250. doi:10.1016/S0308-8146(01)00114-5

    Article  CAS  Google Scholar 

  • Karalija E, Parić A (2011) The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biol Nyssana 2(1):29–35

    Google Scholar 

  • Khaosaad T, Vierheilig H, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza increasesthe content of essential oils in oregano (Origanumsp., Lamiaceae). Mycorrhiza 16:443–446. doi:10.1007/s00572-006-0062-9

    Article  CAS  PubMed  Google Scholar 

  • Kovačik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 320:231–242. doi:10.1007/s11104-009-9889-0

    Article  Google Scholar 

  • Krämer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol Biochem 32:179–188. doi:10.1016/S0038-0717(99)00140-6

    Article  Google Scholar 

  • Kumar K, Rao IU (2012) Morphophysiologicals problems in acclimatisation of micropropagated plants in ex vitro conditions - a review. J Ornam Hortic Plants 2:271–283

    CAS  Google Scholar 

  • Langhansova L, Marsik P, Landa P, Vanek T (2006) Biotechnology methods for plant biomass production under controlled conditions. Acta Hortic 723:263–268

    Article  CAS  Google Scholar 

  • Li Y, Xiao-dong L, Jian-guo L (2010) Study on propagation of adventitious bud of Thymus vulgaris. Hubei Agric Sci 3:51–58

    Google Scholar 

  • Mendes ML, Romano A (1999) In vitro cloning of Thymus vulgaris L. field-grown plants. Acta Hortic 502:303–306

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140. doi:10.1093/oxfordjournals.pcp.a077268

    CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Nordine A, El Meskaoui A (2014) Rapid in vitro regeneration and clonal multiplication of Thymus bleicherianus Pomel, a rare and threatened medicinal and aromatic plant in Morocco. Med Aromat Plant 3:145. doi:10.4172/2167-0412.1000145

    Google Scholar 

  • Nordine A, Bousta D, El Khanchoufi A, El Meskaoui A (2013a) An efficient and rapid in vitro propagation system of Thymus hyemalis Lange, a wild medicinal and aromatic plant of Mediterranean region. Int J Pharm Biosci Technol 1:118–129

    Google Scholar 

  • Nordine A, Tlemcani CR, El Meskaoui A (2013b) Micropropagation of Thymus satureioides Coss. an endangered medicinal plant of Morocco. J Agric Sci Technol Iran 9:421–435

    Google Scholar 

  • Ozudogru EA, Kaya E, Kirdok E, Issever-Ozturk S (2011) In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cell Dev Biol Plant 47:309–320. doi:10.1007/s11627-011-9347-6

    Article  Google Scholar 

  • Pfeffer H, Dannel F, Römheld V (1998) Are there connection between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunflower plants? Physiol Plant 104:479–485

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161. doi:10.1016/s0007-1536(70)80110-3

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quatitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. doi:10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, McEwen J, O'Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of vaccinum species. J Agric Food Chem 46:2686–2693. doi:10.1021/jf980145d

    Article  CAS  Google Scholar 

  • Prins CL, Vieira IJC, Freitas SP (2010) Growth regulators and essential oil production. Braz J Plant Physiol 22:91–102

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333. doi:10.1023/A:1014483303813

    Article  CAS  Google Scholar 

  • Rozpadek P, Wezowicz K, Stojakowska A, Malarz J, Surówka E, Sobczyk Ł, Anielska T, Wazny R, Miszalski Z, Turnau K (2014) Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere 112:217–224. doi:10.1016/j.chemosphere.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  • Sáez F, Sanchez P, Piqueras A (1994) Micropropagation of Thymus piperella. Plant Cell Tissue Organ Cult 39:269–272

    Article  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:03–21. doi:10.1023/A:1013386921596

    Article  CAS  Google Scholar 

  • Shabnum S, Wagay MG (2011) Micropropagation of different species of thymus. J Res Dev 11:71–80

    Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic, London, pp 197–215

    Google Scholar 

  • Stahl-Biskup E, Sáez F (2002) The genus Thymus. Medicinal and aromatic plants – industrial profiles, vol 24. Taylor & Francis, London 330 p

    Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis part 2 microbiological and biochemical properties SSSA book series no. 5. Soil Science Society of America Inc., Madison, pp 775–833

    Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatase produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312. doi:10.1007/BF00262137

    Article  CAS  Google Scholar 

  • Tarraf W, Ruta C, De Cillis F, Tagarelli A, Tedone L, De Mastro G (2015) Effects of mycorrhiza on growth and essential oil production in selected aromatic plants. Ital J Agron 10:160–161. doi:10.4081/ija.2015.633

    Article  Google Scholar 

  • Tepe B, Sokmen M, Akpulat HA, Sokmen A (2006) Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem 95:200–204. doi:10.1016/j.foodchem.2004.12.031

    Article  CAS  Google Scholar 

  • Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50

    CAS  Google Scholar 

  • Wright S, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586. doi:10.1097/00010694-199609000-00003

    Article  CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. doi:10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with financial support from Slovak Research and Development Agency and Bulgarian Science Fund at the Ministry of Education and Science, Bilateral project SK_BG 01/3-30.09.2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Stancheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayova, E., Stancheva, I., Geneva, M. et al. Arbuscular mycorrhizal fungi enhance antioxidant capacity of in vitro propagated garden thyme (Thymus vulgaris L.). Symbiosis 74, 177–187 (2018). https://doi.org/10.1007/s13199-017-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-017-0502-7

Keywords

Navigation