Skip to main content
Log in

Differential protein expression associated with heat stress in Antarctic microalga

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

We used proteomic approaches to study the survival and defense mechanisms of Antarctic microalga under heat stress. The microalga was cultured for optimal growth at 4°C, the temperature was increased to 15°C, and the resultant differentially expressed proteins induced by heat stress were analyzed by mass spectrometry following two-dimensional gel electrophoresis. Orthologues of 22 proteins showed more than two-fold changes in abundance; of these, 8 proteins were up-regulated, and 14 were down-regulated. In addition, changes in the enzyme activities and isozyme profiles of catalase, aldehyde dehydrogenase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase were investigated using an in-gel activitystaining method. Alterations in protein expression and antioxidant enzyme activity in Antarctic algae may be related to survival and defense mechanisms against elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meredith, M.P. & King, J.C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604–L19609 (2005).

    Article  Google Scholar 

  2. Watson, R.T. Climate change 2001: Synthesis report, a contribution of working groups I, II, and III to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press (2001).

  3. Peck, L.S., Webb, K.E. & Bailey, D.M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).

    Article  Google Scholar 

  4. Park, H. et al. Molecular cloning, characterization, and the response of manganese superoxide dismutase from the Antarctic bivalve Laternula elliptica to PCB exposure. Fish Shellfish Immunol. 27, 522–528 (2009).

    Article  CAS  Google Scholar 

  5. Jeon, Y.M., Park, S.K., Kim, W.J., Ham, J.H. & Lee, M.Y. The effects of TiO2 nanoparticles on the protein expression in mouse lung. Mol. Cell. Toxicol. 7, 283–289 (2011).

    Article  CAS  Google Scholar 

  6. Deal, R.B. & Henikoff, S. Gene regulation: A chromatin thermostat. Nature 463, 887–888 (2010).

    Article  CAS  Google Scholar 

  7. Stolzing, A. & Scutt, A. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic. Biol. Med. 41, 326–338 (2006).

    Article  CAS  Google Scholar 

  8. Kumar, S.V. & Wigge, P.A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147 (2010).

    Article  CAS  Google Scholar 

  9. Stauber, E.J. et al. Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot. Cell 2, 978–994 (2003).

    Article  CAS  Google Scholar 

  10. Wang, S.B., Hu, Q., Sommerfeld, M. & Chen, F. Cell wall proteomics of the green alga Haematococcus pluvialis (chlorophyceae). Proteomics 4, 692–708 (2004).

    Article  CAS  Google Scholar 

  11. Shepard, J.L., Olsson, B., Tedengren, M. & Bradley, B.P. Protein expression signatures identified in Mytilus edulis exposed to PCBs, copper and salinity stress. Mar. Environ. Res. 50, 337–340 (2000).

    Article  CAS  Google Scholar 

  12. Kim, Y.K., Yoo, W.I., Lee, S.H. & Lee, M.Y. Proteomic analysis of cadmium-induced protein profile alterations from marine alga Nannochloropsis oculata. Ecotoxicology 14, 589–596 (2005).

    Article  CAS  Google Scholar 

  13. Kim, M., Ahn, I.Y., Cheon, J. & Park, H. Molecular cloning and thermal stress-induced expression of a piclass glutathione S-transferase (GST) in the Antarctic bivalve Laternula elliptica. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 207–213 (2009).

    Article  Google Scholar 

  14. Park, H., Ahn, I.Y. & Lee, H.E. Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperones 12, 275–282 (2007).

    Article  CAS  Google Scholar 

  15. Park, S.K., Jin, E.S. & Lee, M.Y. Expression and antioxidant enzymes in Chaetoceros neogracile, an Antarctic alga. CryoLetters 29, 351–361 (2008).

    CAS  Google Scholar 

  16. Place, S.P. & Hofmann, G.E. Constitutive expression of a heat shock protein, hsp70, in phylogenetically divergent Antarctic fish. Polar Biol. 28, 261–267 (2005).

    Article  Google Scholar 

  17. Song, L. et al. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish Shellfish Immunol. 21, 335–345 (2006).

    Article  CAS  Google Scholar 

  18. Clark, M.S., Fraser, K.P. & Peck, L.S. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13, 39–49 (2008).

    Article  CAS  Google Scholar 

  19. Liu, S. et al. Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 14, 329–337 (2010).

    Article  Google Scholar 

  20. Chang, J., Baloh, R.H. & Milbrandt, J. The NIMAfamily kinase Nek3 regulates microtubule acetylation in neurons. J. Cell Sci. 122, 2274–2282 (2009).

    Article  CAS  Google Scholar 

  21. White, M.C. & Quarmby, L.M. The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol. 9, 29 (2008).

    Article  Google Scholar 

  22. Kang, D.K. & Lee, M.Y. Photoprotective effects of minerals from Korean indigenous ores on uvA-irradiated human dermal fibroblast. Mol. Cell. Toxicol. 4, 150–156 (2008).

    Google Scholar 

  23. Nassoury, N., Fritz, L. & Morse, D. Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell 13, 923–934 (2001).

    CAS  Google Scholar 

  24. Anestis, A., Pörtner, H.O., Lazou, A. & Michaelidis, B. Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation. J. Exp. Biol. 211, 2889–2898 (2008).

    Article  CAS  Google Scholar 

  25. Hofmann, G.E. & Todgham, A.E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).

    Article  CAS  Google Scholar 

  26. Ramnanan, C.J. & Storey, K.B. Glucose-6-phosphate dehydrogenase regulation during hypometabolism. Biochem. Biophys. Res. Commun. 339, 7–16 (2006).

    Article  CAS  Google Scholar 

  27. Gao, M.J., Parkin, I., Lydiate, D. & Hannoufa, A. An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase. Plant Mol. Biol. 55, 417–431 (2004).

    Article  CAS  Google Scholar 

  28. De Alwis, R., Fujita, K., Ashitani, T. & Kuroda, K. Volatile and non-volatile monoterpenes produced by elicitor-stimulated Cupressus lusitanica cultured cells. J. Plant Physiol. 166, 720–728 (2009).

    Article  Google Scholar 

  29. Kuo, C.J. et al. Cloning and characterization of an antifungal class III chitinase from suspension-cultured bamboo (Bambusa oldhamii) cells. J. Agric. Food Chem. 56, 11507–11514 (2008).

    Article  CAS  Google Scholar 

  30. Banik, M., Garrett, T.P. & Fincher, G.B. Molecular cloning of cDNAs encoding (1—>4)-beta-xylan endohydrolases from the aleurone layer of germinated barley (Hordeum vulgare). Plant Mol. Biol. 31, 1163–1172 (1996).

    Article  CAS  Google Scholar 

  31. Li, L., Ilarslan, H., James, M.G., Myers, A.M. & Wurtele, E.S. Genome wide co-expression among the starch debranching enzyme genes AtISA1, AtISA2, and AtISA3 in Arabidopsis thaliana. J. Exp. Bot. 58, 3323–3342 (2007).

    Article  CAS  Google Scholar 

  32. Korkina, L., Scordo, M.G., Deeva, I., Cesareo, E. & De Luca, C. The chemical defensive system in the pathobiology of idiopathic environment-associated diseases. Curr. Drug Metab. 10, 914–931 (2009).

    Article  CAS  Google Scholar 

  33. Vitória, A.P., Lea, P.J. & Azevedo, R.A. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57, 701–710 (2001).

    Article  Google Scholar 

  34. Jeon, Y.M., Park, S.K. & Lee, M.Y. Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain. Animal Cells Syst. 15, 107–114 (2011).

    Article  CAS  Google Scholar 

  35. Kim, Y.K. & Lee, M.Y. Proteomic analysis of differentially expressed proteins of rice in response to cadmium. J. Korean Soc. Appl. Biol. Chem. 52, 428–436 (2009).

    Article  CAS  Google Scholar 

  36. Vega, J.M., Garbayo, I., Dominguez, M.J. & Vigara, J. Effect of abiotic stress on photosynthesis and respiration in Chlamydomonas reinhardtii: Induction of oxidative stress. Enzyme Microb. Technol. 40, 163–167 (2006).

    Article  CAS  Google Scholar 

  37. D’Auria, J.C. & Gershenzon, J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Bio. 8, 308–316 (2005).

    Article  Google Scholar 

  38. Seo, J.S. et al. Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicas. Aquat. Toxicol. 80, 281–289 (2006).

    Article  CAS  Google Scholar 

  39. Cho, Y.M. Study of low temperature adaptive mechanisms in Antarctic green microalga AnF0048. MS thesis, Hanyang University, Korea (2010).

    Google Scholar 

  40. Jeon, Y.M., Son, B.S. & Lee, M.Y. Proteomic analysis of the differentially expressed proteins by airborne nanoparticles. J. Appl. Toxicol. 31, 463–470 (2011).

    Article  Google Scholar 

  41. Choi, K.M. & Lee, M.Y. Effect of freezing stress on the proteome expression of Antarctic green microalga. Mol. Cell. Toxicol. 8, 163–169 (2012).

    Article  CAS  Google Scholar 

  42. Lee, M.Y. & Shin, H.W. Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J. Appl. Phycol. 15, 13–19 (2003).

    Article  CAS  Google Scholar 

  43. Park, S.K., Jin, E.S., Lee, C.G. & Lee, M.Y. High light induced changes in the activities of antioxidant enzymes and the accumulation of astaxanthin in the green alga Haematococcus pluvialis. Mol. Cell. Toxicol. 4, 300–306 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K.M., Lee, M.Y. Differential protein expression associated with heat stress in Antarctic microalga. BioChip J 6, 271–279 (2012). https://doi.org/10.1007/s13206-012-6310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6310-5

Keywords

Navigation