Skip to main content
Log in

Molecular data resolve a new order of Arthoniomycetes sister to the primarily lichenized Arthoniales and composed of black yeasts, lichenicolous and rock-inhabiting species

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Lichenicolous fungi belonging to the anamorph-typified genus Phaeosporobolus and to the teleomorph-typified genus Lichenostigma were isolated in pure culture or sequenced directly, with nuLSU and mtSSU sequences obtained. Phylogenetic analyses place the species of Phaeosporobolus in a strongly supported clade with the generic type of Lichenostigma (L. maureri), the genus Phaeococcomyces and several melanized rock-inhabiting isolates. This strongly supported nonlichenized lineage is sister to the primarily lichenized Arthoniales in the Arthoniomycetes and is here described as the Lichenostigmatales. The new order is characterized by cells multiplying by budding, either representing black yeasts, or species in which conidiomata and ascomata are entirely made of an organised agglomeration of spherical yeast-like cells. This way of life is not only very different from all other Arthoniomycetes that exist only in the mycelial stage, but ascomata and conidiomata representing a dense and organised agglomeration of yeast cells might be unique amongst fungi. A further difference with the Arthoniales is the absence of paraphysoids. Phylogenetic results suggest that Phaeosporobolus usneae is the asexual stage of Lichenostigma maureri. Most species of Phaeosporobolus are transferred to the genus Lichenostigma except P. trypethelii, for which the new genus Etayoa is described. The genus Diederimyces is reduced into synonymy with Lichenostigma. Several other members of Lichenostigma are placed in the Dothideomycetes and are intermixed with Lichenothelia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alstrup V, Hawksworth DL (1990) The lichenicolous fungi of Greenland. Medd Grønland Biosci 31:1–90

    Google Scholar 

  • Baral HO (1987) Lugol’s solution/IKI versus Melzer’s reagent: hemiamyloidity, a universal feature of the ascus wall. Mycotaxon 29:399–450

    Google Scholar 

  • Berger F, Brackel W (2011) Eine weitere Art von Phaeosporobolus auf Lecanora chlarotera. Herzogia 24:351–356

    Article  Google Scholar 

  • Brackel W (2011) Lichenicolous fungi and lichens from Puglia and Basilicata (southern Italy). Herzogia 24:65–101

    Article  Google Scholar 

  • Calatayud V, Barreno E (2003) A new Lichenostigma on vagrant Aspicilia species. Lichenologist 35(4):279–285

    Article  Google Scholar 

  • Calatayud V, Hafellner J, Navarro-Rosinés P (2004) Lichenostigma. In: Nash TH III, Ryan BD, Diederich P, Gries C, Bungartz F (eds) Lichen flora of the Greater Sonoran Desert Region, vol 2, Lichens Unlimited. Arizona State University, Tempe, pp 664–669

  • Calatayud V, Navarro-Rosinés P, Hafellner J (2002) A synopsis of Lichenostigma subgen. Lichenogramma (Arthoniales), with a key to the species. Mycol Res 106:1230–1242

    Article  Google Scholar 

  • Common RS (1991) The distribution and taxonomic significance of lichenan and isolichenan in the Parmeliaceae. I. Introduction and methods. II. The genus Alectoria and associated taxa. Mycotaxon 41:67–112

    Google Scholar 

  • Crous PW, Groenewald JZ, Shivas RG (2012) Phaeococcomyces eucalypti. Fungal Planet 113. Persoonia 29:158–159

    Article  Google Scholar 

  • Cunningham CW, Zhu H, Hillis DM (1998) Best-fit maximum likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52:978–987

    Article  Google Scholar 

  • de Hoog GS (1979) Nomenclature notes on some black yeast-like hyphomycetes. Taxon 28:347–348

    Article  Google Scholar 

  • Diederich P (2004) Phaeosporobolus. In: Nash TH III, Ryan BD, Diederich P, Gries C, Bungartz F (eds) Lichen flora of the Greater Sonoran Desert Region. Lichens Unlimited, vol 2. Arizona State University, Tempe, pp 681–682

  • Diederich P, Ertz D, Eichler M, Cezanne R, van den Boom P, Fischer E, Killmann D, Van den Broeck D, Sérusiaux E (2012a) New or interesting lichens and lichenicolous fungi from Belgium, Luxembourg and northern France. XIV. Bull Soc Nat Lux 113:95–115

    Google Scholar 

  • Diederich P, Lawrey JD, Sikaroodi M, van den Boom P, Ertz D (2012b) Briancoppinsia, a new coelomycetous genus of Arthoniaceae (Arthoniales) for the lichenicolous Phoma cytospora, with a key to this and similar taxa. Fungal Divers 52:1–12

    Article  Google Scholar 

  • Egea JM, Torrente P, Manrique E (1993) The Lecanactis grumulosa group (Opegraphaceae) in the Mediterranean region. Plant Syst Evol 187:103–114

    Article  Google Scholar 

  • Eriksson O, Hawksworth DL (1986) Notes on ascomycete systematics. Nos 1–224. Syst Ascomycetum 5:113–174

    Google Scholar 

  • Ertz D, Bungartz F, Diederich P, Tibell L (2011) Molecular and morphological data place Blarneya in Tylophoron (Arthoniaceae). Lichenologist 43:345–356

    Article  Google Scholar 

  • Ertz D, Tehler A (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Divers 49:47–71

    Article  Google Scholar 

  • Etayo J (1995) Two new species of lichenicolous fungi from the Pyrenees. Nova Hedwig 61:189–197

    Google Scholar 

  • Etayo J, Sancho LG (2008) Hongos liquenícolas del Sur de Sudamérica, especialmente de Isla Navarino (Chile). Bibl Lichen 98:1–302

    Google Scholar 

  • Fernández-Brime S, Llimona X, Navarro-Rosinés P (2010) Lichenostigma rupicolae (Lichenotheliaceae), a new lichenicolous species growing on Pertusaria rupicola. Lichenologist 42:241–247

    Article  Google Scholar 

  • Flakus A, Kukwa M (2012) New species of lichenicolous fungi from Bolivia. Lichenologist 44:469–477

    Article  Google Scholar 

  • Gueidan C, Ruibal CV, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafellner J (1982) Studien über lichenicole Pilze und Flechten II Lichenostigma maureri gen. et spec. nov., ein in den Ostalpen häufiger lichenicoler Pilz (Ascomycetes, Arthoniales). Herzogia 6:299–308

    Google Scholar 

  • Hafellner J, Calatayud V (1999) Lichenostigma cosmopolites, a common lichenicolous fungus on Xanthoparmelia species. Mycotaxon 72:107–114

    Google Scholar 

  • Harris RC, Lendemer JC (2009) The Fellhanera silicis group in eastern North America. Opuscula Philolichenum 6:157–174

    Google Scholar 

  • Hawksworth DL, Hafellner J (1986) Phaeosporobolus usneae, a new and widespread lichenicolous deuteromycete. Nova Hedwig 43:525–530

    Google Scholar 

  • Henssen A (1987) Lichenothelia, a genus of microfungi on rocks. In: Peveling E (ed) Progress and problems in lichenology in the eighties. Bibl Lichen 25. J Cramer, Berlin-Stuttgart, pp 257–293

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Ihlen PG (2004) A new species of Lichenostigma (Lichenotheliaceae, Arthoniales) from Scandinavia. Lichenologist 36:183–189

    Article  Google Scholar 

  • Kalb K, Hafellner J, Staiger B (1995) Haematomma-Studien, II. Lichenicole Pilze auf Arten der Flechtengattung Haematomma. Bibl Lichen 59:1–222

    Google Scholar 

  • Knudsen K, Kocourkova J (2010) A new Lichenostigma species (genus incertae sedis) from southern California. Bryologist 113:229–234

    Article  Google Scholar 

  • Kocourková J (2000) Lichenicolous fungi of the Czech Republic (the first commented checklist). Acta Mus Natl Pragae Ser B Hist Nat 55:59–169

    Google Scholar 

  • Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:80–120

    Article  Google Scholar 

  • Lawrey JD, Binder M, Diederich P, Molina MC, Sikaroodi M, Ertz D (2007) Phylogenetic diversity of lichen-associated homobasidiomycetes. Mol Phylogenet Evol 44:778–789

    Article  CAS  PubMed  Google Scholar 

  • Lawrey JD, Diederich P, Nelsen MP, Sikaroodi M, Gillevet PM, Brand AM, van den Boom P (2011) The obligately lichenicolous genus Lichenoconium represents a novel lineage in the Dothideomycetes. Fungal Biology 115:176–187

    Article  CAS  PubMed  Google Scholar 

  • Lawrey JD, Diederich P, Nelsen MP, Freebury C, Van den Broeck D, Sikaroodi M, Ertz D (2012) Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). Fungal Divers 55:195–213

    Article  Google Scholar 

  • Liò P, Goldman N (1998) Models of molecular evolution and phylogeny. Genome Res 8:1233–1244

    PubMed  Google Scholar 

  • Lumbsch HT, Huhndorf AM (2010) Myconet Volume 14. Part One. Outline of Ascomycota–2009. Part Two. Notes on ascomycete systematics. Nos. 4751–5113. Fieldiana 1:1–64

    Google Scholar 

  • Maddison D, Maddison W (2002) MacClade version 4.03PPC: analysis of phylogeny and character evolution. Sinauer, Sunderland

    Google Scholar 

  • Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular datasets in the tribe Triticeae (Gramineae). Systematic Biol 45:524–545

    Article  Google Scholar 

  • McGinnis MR, Schell WA, Carson J (1985) Phaeoannellomyces and the Phaeococcomycetaceae, new dematiaceous blastomycete taxa. Sabouraudia 23:179–188

    Article  CAS  PubMed  Google Scholar 

  • Miadlikowska J, McCune B, Lutzoni F (2002) Pseudocyphellaria perpetua, a new lichen from Western North America. Bryologist 105:1–10

    Article  CAS  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp 1–8

  • Muggia L, Gueidan C, Knudsen K, Perlmutter G, Grube M (2012) The lichen connections of Black fungi. Mycopathologia. doi:10.1007/s11046-012-9598-8

    PubMed  Google Scholar 

  • Navarro-Rosinés P, Hafellner J (1996) Lichenostigma elongata spec. nov. (Dothideales), a lichenicolous ascomycete on Lobothallia and Aspicilia species. Mycotaxon 57:211–225

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.5., available from: http://beast.bio.ed.ac.uk/Tracer

  • Rambaut A (2012) FigTree v1.3.1, available from: http://tree.bio.ed.ac.uk/software/figtree/

  • Rich MA, Stern AM (1958) Studies of Cryptococcus nigricans n. sp. I. Identification and taxonomic classification. Mycopathol Mycol Appl 9(3):189–193

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21:93–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruibal C, Millanes AM, Hawksworth DL (2011) Molecular phylogenetic studies on the lichenicolous Xanthoriicola physciae reveal Antarctic rock-inhabiting fungi and Piedraia species among closest relatives in the Teratosphaeriaceae. IMA Fungus 2:97–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large 437 phylogenetic trees. Bioinformatics 21:456–463

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Thor G (1985) A new species of Lichenostigma, a lichenicolous ascomycete. Lichenologist 17:269–272

    Article  Google Scholar 

  • Tsuneda A, Hambleton S, Currah RS (2011) The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany 89:523–536

    Article  Google Scholar 

  • Valadbeigi T, Brackel W (2011) Two new species of Lichenostigma (Lichenotheliaceae, lichenicolous fungi) from Iran. Willdenowia 41:191–195

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Arx JA (1963) Die Gattungen der Myriangiales. Persoonia 2:421–475

    Google Scholar 

  • Yang Z, Goldman N, Friday A (1994) Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11:316–324

    CAS  PubMed  Google Scholar 

  • Yoshimura I, Yamamoto Y, Nakano T, Finnie J (2002) Isolation and culture of lichen photobionts and mycobionts. In: Kranner I, Beckett RP, Varma A (eds) Protocols in lichenology – culturing, biochemistry, physiology and use in biomonitoring. Springer, Berlin, pp 3–33

    Google Scholar 

  • Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31:511–516

    Article  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph. D. dissertation, The University of Texas at Austin.

Download references

Acknowledgments

We would like to thank the curators of herbaria cited in Materials and Methods for the loan of specimens. Ann Bogaerts, Myriam Dehaan and Wim Baert are thanked for technical assistance. Gisèle Van Cappellen, Trevor Goward, Nibedita Mukherjee and Paul Neuberg kindly provided fresh specimens used in this study. Finally, the first author acknowledges financial support from the Fonds National de la Recherche Scientifique (FNRS) from Belgium (F.R.F.C. # 2.4567.08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Ertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertz, D., Lawrey, J.D., Common, R.S. et al. Molecular data resolve a new order of Arthoniomycetes sister to the primarily lichenized Arthoniales and composed of black yeasts, lichenicolous and rock-inhabiting species. Fungal Diversity 66, 113–137 (2014). https://doi.org/10.1007/s13225-013-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0250-9

Keywords

Navigation