Skip to main content
Log in

The sooty moulds

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Sooty moulds are a remarkable, but poorly understood group of fungi. They coat fruits and leaves superficially with black mycelia, which reduces photosynthesis rates of host plants. Few researchers have, however, tried to quantify their economic importance. Sooty moulds have been well-studied at the morphological level, but they are poorly represented in a natural classification based on phylogeny. Representatives are presently known in Antennulariellaceae, Capnodiaceae, Chaetothyriaceae, Coccodiniaceae, Euantennariaceae, Metacapnodiaceae and Trichomeriaceae and several miscellaneous genera. However, molecular data is available for only five families. Most sooty mould colonies comprise numerous species and thus it is hard to confirm relationships between genera or sexual and asexual states. Future studies need to obtain single spore isolates of species to test their phylogenetic affinities and linkages between morphs. Next generation sequencing has shown sooty mould colonies to contain many more fungal species than expected, but it is not clear which species are dominant or active in the communities. They are more common in tropical, subtropical and warm temperate regions and thus their prevalence in temperate regions is likely to increase with global warming. Sooty moulds are rarely parasitized by fungicolous taxa and these may have biocontrol potential. They apparently grow in extreme environments and may be xerophilic. This needs testing as xerophilic taxa may be of interest for industrial applications. Sooty moulds grow on sugars and appear to out-compete typical “weed” fungi and bacteria. They may produce antibiotics for this purpose and their biochemical potential for obtaining novel bioactive compounds for medical application is underexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jõgeva J, Halapuu S, Põldmaa K, Toots M, Trrruu J, Larsson KH, Kõljalg U (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinform Online 6:189

    PubMed Central  Google Scholar 

  • Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28(1):1–13

    Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19(24):5555–5565. doi:10.1111/j.1365-294X.2010.04898

    CAS  PubMed  Google Scholar 

  • Ando K (1992) A study of terrestrial aquatic hyphomycetes. Trans Mycol Soc Jpn 33:415–425

    Google Scholar 

  • Aragão PHA, Andrade CGTJ, Ota AT, Costa MF (2012) Relationship between Fe 2+ Ca 2+ ions and cyclodextrin in olive trees infected with sooty mold. J Phys Conf Ser 371, art. no. 012029

    Google Scholar 

  • Auclair JL (1963) Aphid feeding and nutrition. Annu Rev Entomol 8:439–490

    Google Scholar 

  • Baldrian P, Vetrovsky T, Cajthaml T, Dobiasova P, Petrankova M, Snajdr J, Eichlerova I (2013) Estimation of fungal biomass in forest litter and soil. Fungal Ecol 6(1):1–11. doi:10.1016/j.funeco.2012.10.002

    Google Scholar 

  • Barr ME (1987) Prodomus to class loculoascomycetes. University of Massachusetts, Amherst

    Google Scholar 

  • Batista AC (1959) Monografia dos fungos micropeltaceae. Publicações Instituto de Micologia da Universidade do Recife 56:1–519

    Google Scholar 

  • Batista AC, Ciferri R (1962) The chaetothyriales. Sydowia 3:1–129

    Google Scholar 

  • Batista AC, Ciferri R (1963a) Capnodiales. Saccardoa 2:1–296

    Google Scholar 

  • Batista AC, Ciferri R (1963b) The sooty–molds of the family asbolisiaceae. Quad Ist Bot Univ Lab Crittogam Pavia 31:1–229

    Google Scholar 

  • Batista AC, Nascimento ML (1957) Alguns novos fungos imperfeitos do complex de fumagina. An Soc Biol Pernambuco 15(2):345–353

    Google Scholar 

  • Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. J Antibiot (Tokyo) 31(11):1099–1101

    CAS  Google Scholar 

  • Beggs JR, Karl BJ, Wardle DA, Bonner KI (2005) Soluble carbon production by honeydew scale insects in a New Zealand beech forest. N Z J Ecol 29:105–115

    Google Scholar 

  • Berkeley MJ, Desmazières JBHJ (1849) On some moulds referred by authors to Fumago and to certain allied or analogous forms. J Hortic Soc London 4:3–19

    Google Scholar 

  • Bussaban B, Boontim N, Lamyong S (2011) Edible gelatinized sooty mold species from Thailand. In Proceedings of The National Conference on Mushroom Science. Chiang Mai, Thailand

  • Byrami F, Khodaparast SA, Pedramfar H (2013) New records of citrus sooty mold fungi from North of Iran. JCP 2(3):369–374

    Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CAB International, Wallingford

    Google Scholar 

  • Cannon PF, Hawksworth DL, Sherwood-Pike MA (1985) The British ascomycotina, an annotated checklist. Commonwealth Agricultural Bureaux, Slough

    Google Scholar 

  • Carlton C, Leschen RA (2007) Descriptions of soronia complex (coleoptera: nitidulidae: nitidulinae) larvae of New Zealand with comments on life history and taxonomy. N Z Entomol 30:41–51

    Google Scholar 

  • Chadderton W, Ryan P, Winterbourn M (2003) Distribution, ecology, and conservation status of freshwater idoteidae (isopoda) in southern New Zealand. J R Soc N Z 33:529–548

    Google Scholar 

  • Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-anun C, Crous PW (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia 23:55–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    PubMed Central  PubMed  Google Scholar 

  • Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko Ko TW, Hongsanan S, Jones EBG, Kodserb R, Chukeatirote E, Bahkali AH, Hyde KD (2011) Capnodiaceae. Fungal Divers 51(1):103–134

    PubMed Central  PubMed  Google Scholar 

  • Chomnunti P, Bhat DJ, Jones EBG, Chukeatirote E, Bahkali AH, Hyde KD (2012a) Trichomeriaceae, a new sooty mould family of chaetothyriales. Fungal Divers 56:63–76

    Google Scholar 

  • Chomnunti P, Ko Ko TW, Chukeatirote E, Cai L, Jones EBG, Kodsueb R, Chen H, Hassan BA, Hyde KD (2012b) Phylogeny of chaetothyriaceae in northern Thailand including three new species. Mycologia 104:382–395

    PubMed  Google Scholar 

  • Collado J, Platas G, Paulus B, Bills GF (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60(3):521–533

    CAS  PubMed  Google Scholar 

  • Collins SP, Pope RK, Scheetz RW, Ray RI, Wagner PA, Little BJ (1993) Advantages of environmental scanning electron microscopy in studies of microorganisms. Microsc Res Tech 25:398–405

    CAS  PubMed  Google Scholar 

  • Crane JL, Hughes SJ (1982) Capnocheirides: a new generic name for Torula rhododendri. Mycologia 74(5):752–758

    Google Scholar 

  • Crous PW, Braun U, Groenewald JZ (2007) Mycosphaerella is polyphyletic. Stud Mycol 58:1–3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009a) Phylogenetic lineages in the capnodiales. Stud Mycol 64:17–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009b) Fungal biodiversity. CBS Laboratory Manual Series Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Dalvi MB, Godes SK, Shinde AK, Patil BP (2002) Evaluation of cleaning agents for sooty mould (Capnodium species) affected mango (Mangifera indica) fruits. Indian J Agric Sci 72(4):223–224

    Google Scholar 

  • de Filho JPL, Paiva ÉAS (2006) The effects of sooty mold on photosynthesis and mesophyll structure of mahogany (Swietenia macrophylla King., Meliaceae). Bragantia 65(1):11–17

    Google Scholar 

  • Deffieux G, Baute MA, Baute R, Filleau MJ (1978) New antibiotics from the fungus Epicoccum nigrum. II. Epicorazine a: structure elucidation and absolute configuration. J Antibiot 31:1102–1105

    CAS  PubMed  Google Scholar 

  • Descals E, Peláez F, López Llorca LV (1995) Fungal spora of stream foam from central Spain I. Nova Hedwigia 60:533–550

    Google Scholar 

  • Dhami MK, Gardner-Gee R, Van Houtte J, Villas-Bôas SG, Beggs JR (2011) Species-specific chemical signatures in scale insect honeydew. J Chem Ecol 37:1231–1241

    CAS  PubMed  Google Scholar 

  • Dhami MK, Weir BS, Taylor MW, Beggs JR (2013) Diverse honeydew-consuming fungal communities associated with scale insects. PLoS ONE 8(7):e70316. doi:10.1371/journal.pone.0070316

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiGuistini S, Liao NY, Platt D, Robertson G, Seidel M, Chan SK, Docking TR, Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil C, Jones SJM (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and illumina sequence data. Genome Biol 10:R94

    PubMed Central  PubMed  Google Scholar 

  • Dungan RJ, Turnbull MH, Kelly D (2007) The carbon costs for host trees of a phloem-feeding herbivore. J Ecol 95:603–613

    CAS  Google Scholar 

  • Eriksson OE (1981) The families of bitunicate Ascomycetes. Opera Botanica 60:1–209

    Google Scholar 

  • Ewaze JO, Summerbell RC, Scott JA (2007) Physiological studies of the warehouse staining fungus, Baudoinia compniacensis. Mycol Res 111(12):1422–1430

    CAS  PubMed  Google Scholar 

  • Faull JL, Olejnik I, Ingrouille M, Reynolds D (2002) A reassessment of the taxonomy of some tropical sooty moulds. Trop Mycol 2:33–40

    Google Scholar 

  • Fiori M (2001) Iron in olive tree leaves in the Mediterranean area. J Radioanal Nucl Chem 249(2):509–512

    Google Scholar 

  • Flessa F, Rambold G (2013) Diversity of the Capnocheirides rhododendri-dominated fungal community in the phyllosphere of Rhododendron ferrugineum L. Nova Hedwigia 97(1–2):19–53. doi:10.1127/0029-5035/2013/00xx

    Google Scholar 

  • Flessa F, Peršoh D, Gerhard R (2012) Annuality of central European deciduous tree leaves delimits community development of epifoliar pigmented fungi. Fungal Ecol 5:554–561

    Google Scholar 

  • Fraser L (1935) An investigation of the sooty mould of New South Wales IV the species of the Eucapnodieae. Proc Linnean Soc NSW 40:159–178

    Google Scholar 

  • Friend RJ (1965a) What is Fumago vagans? Trans Br Mycol Soc 48(3):371–375

    Google Scholar 

  • Friend RJ (1965b) A study of sooty mould on lime trees (Tilia × vulgaris). Trans Br Mycol Soc 48(3):367–370

    Google Scholar 

  • Gams W, Baral HO, Jaklitsch WM, Kirschner R, Stadler M (2012) Clarifications needed concerning the new article 59 dealing with pleomorphic fungi. IMA Fungus 3:175–177

    PubMed Central  PubMed  Google Scholar 

  • Gardner G (1849) Extracts from a report by George Gardner, Esq., on the coffee blight of Ceylon, addressed to the Seceretary to Government. J Hort Soc London 4:1–6

    Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch CL, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: eurotiomycetidae and chaetothyriomycetidae. Mycologia 98(6):1053–1064

    PubMed  Google Scholar 

  • Gönczöl J, Révay A (2006) Species diversity of rainborne hyphomycete conidia from living trees. Fungal Divers 22:37–54

    Google Scholar 

  • Gong M (1993) Notes of rattan diseases. For Res (China) 6(5):565–568

    Google Scholar 

  • Guarneri F, Guarneri C, Cannavò SP, Guarneri B (2008) Dyschromia of hands and bronchial asthma caused by sooty molds (2008). Am J Clin Dermatol 9(5):341–343

    PubMed  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hansford GC (1946) The foliicolous Ascomycetes, their parasites and associated fungi. Mycol Pap 15:1–240

    Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai FY, de Beer ZW, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, de Gruyter J, Guého-Kellermann E, Guo LD, Hibbett DS, Hong SB, de Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau PE, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Oziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, van Raak M, Varga J, Vasco A, Verkley G, Videira SI, de Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112

    PubMed Central  PubMed  Google Scholar 

  • He F (2011) Microbial community from Septobasidium associated scale insects. A dissertation for master’s degree, University of Science and Technology of China, 73p

  • He F, Lin B, Sun JZ, Liu XZ (2013) Knufia aspidiotus sp. nov., a new black yeast from scale insects. Phytotaxa 153(1):39–50

    Google Scholar 

  • Herath K, Jayasuriya H, Zink DL, Sigmund J, Vicente F, de la Crusz M, Basilio A, Bills GF, Polishook JD, Donald R, Phillips J, Goetz M, Singh SB (2012) Isolation, structure elucidation, and antibacterial activity of methiosetin, a tetramic acid from a tropical sooty mold (Capnodium sp.). J Nat Prod 75(3):420–424

    CAS  PubMed  Google Scholar 

  • Höhnel F (1910) Fragmente zur Mykologie (Xi Mitteilung, Nr. 527 bis 573) Sitsungsber, Kaiserl. Akad Wiss Math-Naturwiss Cl Abt 1 119:618–679

  • Hongsanan S, Chomnunti P, Crous PW, Chukeatrote E, Hyde KD (2014) Introducing Chaetothyriothecium, a new genus of Microthyriales. Phytotaxa in press.

  • Hosagoudar VB, Riju MC (2011) Some interesting Meliolaceae members from Western Ghats Region of Kerala State. Plant Pathol Quar 1(2):121–129

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    CAS  PubMed  Google Scholar 

  • Hughes SJ (1966) New Zealand fungi 7. Capnocybe and Capnophialophora, new form genera of sooty moulds. N Z J Bot 4:333–353

    Google Scholar 

  • Hughes SJ (1972) New Zealand fungi 17, pleomorphism in Euantennariaceae and Metacapnodiaceae, two families of sooty moulds. N Z J Bot 10:225–242

    Google Scholar 

  • Hughes SJ (1976) Sooty moulds. Mycologia 68(4):693–820

    Google Scholar 

  • Hughes SJ (1983) New Zealand fungi. 32. Janetia capnophila sp. nov. and some allies. N Z J Bot 21(2):177–182

    Google Scholar 

  • Hughes SJ (2000) Antennulariella batistae n.sp. and its Capnodendron and Antennariella synanamorphs with notes on Capnodium capsuliferum. Can J Bot 78:1215–1226

    Google Scholar 

  • Hughes SJ (2002) Capnokyma rossmanae, a new species of sooty molds. Mycologia 93(3):603–605

    Google Scholar 

  • Hughes SJ (2003) Capnofrasera dendryphioides, a new genus and species of sooty moulds. N Z J Bot 41(1):139–146

    Google Scholar 

  • Hughes SJ (2007) Heteroconium and Pirozynskiella n. gen., with comments on conidium transseptation. Mycologia 99(4):628–638

    CAS  PubMed  Google Scholar 

  • Hughes SJ, Crane JL (2006) A new name for Torula glutinosa in Heteroconium. Mycologia 98(1):141–143

    CAS  PubMed  Google Scholar 

  • Hughes SJ, Seifert KA (2012) Taxonomic and nomenclatural notes on sooty mould name based on species mixtures: Hormiscium handelii and Torula lecheriana. Mycoscience 53:17–24

    Google Scholar 

  • Hughes SJ, Atkinson TJ, Seifert KA (2012) New Zealand fungi 37: two new species of the sooty mould genus Metacapnodium with dictyoseptate ascospores. N Z J Bot 50(4):381–387

    Google Scholar 

  • Hyde KD, Jones EBG, Liu JK, Ariyawansha H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous P, Dai DQ, Diederich P, Dissanayake A, Doilom M, Doveri F, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu YX, Lücking R, Monkai J, Nelsen MP, Phookamsak R, Muggia L, Pang KL, Senanayake I, Shearer CA, Wijayawardene N, Wu HX, Thambugala M, Suetrong S, Tanaka K, Wikee S, Zhang Y, Hudson BA, Alias SA, Aptroot A, Bahkali AH, Bezerra LJ, Bhat JD, Camporesi E, Chukeatirote E, Hoog SD, Gueidan C, Hawksworth DL, Hirayama K, Kang JC, Knudsen K, Li WJ, Liu ZY, McKenzie EHC, Miller AN, Nadeeshan D, Phillip AJL, Mapook A, Raja HA, Tian Q, Zhang M, Scheuer C, Schumm F, Taylor J, Yacharoen S, Tibpromma S, Wang Y, Yan J, Li X (2013) Families of dothideomycetes. Fungal Divers 63:1–313

    Google Scholar 

  • Jamadar MM, Balikai RA, Sataraddi AR (2009) Status of diseases on ber (Ziziphus mauritiana Lamarck) in India and their management options. Acta Horticult 840:383–390

    CAS  Google Scholar 

  • Johow F (1896) Estudio Sobre la Flora de las Islas de Juan Fernández. Kessinger Publishing, Santiago

    Google Scholar 

  • Jouraeva VA, Johnson DL, Hassett JP, Nowak DJ, Shipunova NA, Barbarossa D (2006) Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves. Environ Res 102:272–282

    CAS  PubMed  Google Scholar 

  • Kamal, Verma RV, Morgan-Jones G (1986) Notes on Hyphomycetes. LI. Kameshwaromyces, a new foliicolous, sooty mold-like genus from Madhya Pradesh, India. Mycotaxon 25(1):247–250

    Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    CAS  PubMed  Google Scholar 

  • Kessler Jr KJ (1992) How to recognize and control sooty molds HT-69 (online). U.S. Department of Agriculture, Forest Service, Northern Area State and Private Forestry, Broomall, PA. Available from: www.treesearch.fs.fed.us/pubs/10925

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Laatsch H (2012) AntiBase 2012 The natural compound identifier. Wiley-VCH Verlag GmbH & Co. KGaA

  • Labandeira CC (2006) Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Syst Phylogeny 64:53–94

    Google Scholar 

  • Laemmlen FF (2011) Sooty mold. integrated pest management for home gardeners and landscape professionals. Pest notes, University of California. Agriculture and Natural Resources, USA. Retrieved November 12, 2012, from http://www.ipm.ucdavis.edu/PDF/PESTNOTES/pnsootymold.pdf

  • Lamborn AR (2009) Black, sooty mold on lanscape plants. University of Florida, IFAS Extension

  • Leschen RA, Buckley TR, Harman HM, Shulmeister J (2008) Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics. Mol Ecol 17:1256–1276

    PubMed  Google Scholar 

  • Léveillé JH (1847) Mycologie, mycétologie. In D’Orbigny, Dictionnaire univ d’Hist nat 9:261–303

    Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide. New Phytol 199(1):288–299. doi:10.1111/nph.12243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103:731–740

    PubMed  Google Scholar 

  • Liu JK, Phookamsak R, Doilom M, Wikee S, Li YM, Ariyawansha H, Boonmee S, Chomnunti P, Dai DQ, Bhat JD, Romero AI, Zhuang WY, Monkai J, Jones EBG, Chukeatirote E, Ko Ko TW (2012) Towards a natural classification of Botryosphaeriales. Fungal Divers 57(1):149–210

    Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Outline of ascomycota–2009. Fieldiana Life Earth 1:1–60

    Google Scholar 

  • Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD (2011) Pestalotiopsis—morphology, phylogeny, biochemistry and diversity. Fungal Divers 50:167–187

    Google Scholar 

  • Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Crous PW, Bhat DJ, McKenzie EHC, Bahkali AH, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers 56:95–129

    Google Scholar 

  • Manoharachary C, Agarwal DK, Rao NK (2004) A new anamorphic genus from India. Indian Phytopathol 57:161–163

    Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Ann Rev Anal Chem (Palo Alto, Calif) 6:287–303. doi:10.1146/annurev-anchem-062012-092628

    CAS  Google Scholar 

  • McAlpine D (1896) The sooty mould of citrus trees: a study in polymorphism. Proc Linnean Soc NSW 21:469–499

    Google Scholar 

  • McNeill J, Turland NJ (2011) Major changes to the code of nomenclature-Melbourne. Taxon 60(5):1495–1497

    Google Scholar 

  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GE, Wiersema JH, Turland NJ (eds) (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. [Regnum Vegetabile no. 154.] Ruggell: A.R.G. Gantner Verlag. Retrieved January 18, 2013, from http://www.iapt-taxon.org/nomen/main.php

  • Mehrotra MD (1997) Diseases of Paulownia and their management. Indian Forester 123(1):66–72

    Google Scholar 

  • Min XJ, Hickey DA (2007) Assessing the effect of varying sequence length on DNA barcoding of fungi. Mol Ecol Notes 7:365–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy DJ, Kelly D (2003) Seasonal variation in the honeydew, invertebrate, fruit and nectar resource for bellbirds in a New Zealand mountain beech forest. N Z J Ecol 27:11–23

    Google Scholar 

  • Mwenje E, Mguni N (2001) Cellulolytic and pecinolytic activities of Capnodium isolates (Sooty mould) from Zimbabwe. Can J Bot 9(12):1492–1495

    Google Scholar 

  • Nakada Y, Nakaba S, Matsunaga H, Funada R, Yoshida M (2013) Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe. Biosci Biotechnol Biochem 77(2):405–408

    CAS  PubMed  Google Scholar 

  • Nel A, Prokop J, Nel P, Grandcolas P, Huang DY, Roques P, Guilbert E, Dostál O, Nel A, Zhao Y, Mädler L (2013) Environmental health and safety considerations for nanotechnology. Chem Res 46(3):605–606

    CAS  Google Scholar 

  • Nelson S (2008) Sooty molds. Plant Dis 52:1–6

    Google Scholar 

  • Ng KC (1963) A histochemical study of the role of lignification and peroxidase activity in zvound-vessel differentiation. M.S. thesis. University of Idaho

  • Nieves-Rivera ÁM, Tattar TA, Williams EH Jr (2002) Sooty mould-planthopper association on leaves of the black mangrove Avicennia germinans (L.) stearn in southwestern Puerto Rico. Arboricultural J 26(2):141–155

    Google Scholar 

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296:97–101

    CAS  PubMed  Google Scholar 

  • Nilsson RH, Tedersoo L, Lindahl BD, Kjøofller R, Carlsen T, Quince C, Abarenkov K, Pennanen T, Stenlid J, Bruns, Larsson KH, Kõljalg, Kauserud H (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191:314–318

    Google Scholar 

  • Nurmiaho-Lassila E-L, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035

    CAS  Google Scholar 

  • Olejnik IM, Ingrouille M, Faull JL (1999) Numerical taxonomy of the sooty moulds Leptoxyphium, Caldariomyces and Aithaloderma based on micromorphology and physiology. Mycol Res 103:333–346

    Google Scholar 

  • Page RDM (2001) TreeView: tree drawing software for Apple Macintosh and Windows. Available at http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

  • Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A (2009) How many bootstrap replicates are necessary? LNCS 5541:184–200

    CAS  Google Scholar 

  • Perez JL, French JV, Summy KR, Baines AD, Little CR (2009) Fungal phyllosphere communities are altered by indirect interactions among trophic level. Microb Ecol 57(4):766–774

    PubMed  Google Scholar 

  • Peršoh D (2013) Factors shaping community structure of endophytic fungi–evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69

    Google Scholar 

  • Persoon CH (1822) Mycologia Europeae. Sectio prima. Completa Omnium Fungorum in Variis Europae Regionibus Detectorum Enumeratio. Erlangae, Impensibus I. I. Palmii, Germany

    Google Scholar 

  • Phillips AJL, Oudemans PV, Correia A, Alves A (2006) Characterisation and epitypification of Botryosphaeria corticis, the cause of blueberry cane canker. Fungal Divers 21:141–155

    Google Scholar 

  • Phillips AJL, Crous PW, Alves A (2007) Diplodia seriata, the ana-morph of “Botryosphaeria” obtusa. Fungal Divers 25:141–155

    Google Scholar 

  • Pickard A, Kadima T, Carmichael R (1991) Chloroperoxidase−a peroxidase with potential. J Ind Microbiol 7:235–242

    CAS  Google Scholar 

  • Pohlad BR (1988) Rhombostilbella parasitizing Chaetothyriaceae and Capnodiaceae. Mycologia 80:757–759

    Google Scholar 

  • Porter TM, Golding GB (2011) Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? New Phytol 192:775–782

    CAS  PubMed  Google Scholar 

  • Priester JH, Horst AM, Van De Werfhorst LC, Saleta JL, Mertes LA, Holden PA (2007) Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68:577–587

    CAS  PubMed  Google Scholar 

  • Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time TaqMan PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biol 7(6):713–717. doi:10.1055/s-2005-873003

    CAS  PubMed  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348(1):1–10. doi:10.1111/1574-6968.12225

    CAS  PubMed  Google Scholar 

  • Ratan A, Miller W, Guillory J, Stinson J, Seshagiri S, Schuster SC (2013) Comparison of sequencing platforms for single nucleotide variant calls in a human sample. PLoS ONE 8(2):e55089. doi:10.1371/journal.pone.0055089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds DR (1971) The sooty mold ascomycetes genus Limacinula. Mycologia 63(6):1173–1209

    Google Scholar 

  • Reynolds DR (1998) Capnodiaceous sooty mold phylogeny. Can J Bot 76:2125–2130

    Google Scholar 

  • Reynolds DR (1999) Capnodium citri: the sooty mold fungi comprising the taxon concept. Mycopathologia 148:141–147

    CAS  PubMed  Google Scholar 

  • Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Aust Syst Bot 18:265–289

    Google Scholar 

  • Rossman AY, Seifert KA (2011) Phylogenetic revision of taxonomic concepts in the Hypocreales and other Ascomycota–A tribute to Gary J. Samuels. Stud Mycol 68:4–8

    Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock–inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santilli J Jr, Rockwell WJ, Collins RP (1985) The significance of the spores of the Basidiomycetes (mushrooms and their allies) in bronchial asthma and allergic rhinitis. Ann Allergy 5:469–471

    Google Scholar 

  • Santos SAP, Santos C, Silva S, Pinto G, Torres LM, Nogueira AJA (2013) The effect of sooty mold on fluorescence and gas exchange properties of olive tree. Turk J Biol 37:620–628

    CAS  Google Scholar 

  • Schmidt AR, Beimforde C, Seyfullah LJ, Wege SE, Dörfelt H, Girard V, Grabenhorst H, Gube M, Heinrichs J, Nel A, Nel P, Perrichot P, Reitner J, Rikkinen J (2014) Amber fossils of sooty moulds. Rev Palaeobot Palynol 200:53–64

    Google Scholar 

  • Schmutz J (2013) Advances In De Novo Sequencing Of Complex Eukaryotic Genomes. eds.), Plant and Animal Genome21, January 2013, San Diego, CA

  • Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    CAS  PubMed  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lucking R, Lumbsch HT, Marvanova L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of dothideomycetes. Stud Mycol 64:1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas PP, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul T, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109(16):6241–6246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JA, Untereiner WA, Ewaze JO, Wong B, Doyle D (2007) Baudoinia, a new genus to accommodate Torula compniacensis. Mycologia 99(4):592–601

    PubMed  Google Scholar 

  • Seifert KA, Hughes SJ (2000) Spiropes dictyosporus, a new synnematous fungus associated with sooty moulds. N Z J Bot 38(3):489–492

    Google Scholar 

  • Seifert KA, Samson RA, deWaard JR et al (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seifert K, Morgan–Jones G, Gams W, Kendrick B (2011) The Genera of Hyphomycetes CBS–KNAW Fungal Biodiversity Centre Utrecht, The Netherlands

  • Selbmann L., de Hoog GS, Zucconi L., Isola D., Onofri S. (2014) Black yeasts in cold habitats. Cold-adapted Yeasts, Biodiversity, Adaptation Strategies and Biotechnological Significance. 173-189

  • Serrato-Díaz LM, Rivera-Vargas LI, Goenaga R (2010) First report of sooty mold of longan (Dimocarpus longan L.) caused by Tripospermum porosporiferum Matsushima and T. variabile Matsushima in Puerto Rico. J Agric Univ P R 94(3–4):285–287

    Google Scholar 

  • Shenoy BD, Jeewon R, Lam WH, Bhat DJ, Than PP, Talor WJ, Hyde KD (2007) Morpho-molecular characterisation and epitypification of Colletotrichum capsici (Glomerellaceae, Sordariomycetes), the causative agent of anthracnose in chilli. Fungal Divers 27:197–211

    Google Scholar 

  • Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Google Scholar 

  • Smith BJ, Collier KJ (2000) Interactions of adult stoneflies (Plecoptera) with riparian zones II. Diet. Aquat Insects 22:285–296

    Google Scholar 

  • Smith JS Jr, Tedders WL (1978) Light measurements for study of sooty mold growth on pecan foliage. Trans ASAE 23(2):481–484

    Google Scholar 

  • Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9:60

    Google Scholar 

  • Spegazzini CL (1918) Notas micológicas. Physics (Buenos Aires) 4:281–295

    Google Scholar 

  • Srivastava VK, Thakre RP (1996) Management of sooty mould of ‘Nagpur’ mandarin orange (Citrus reticulata Blanco) by chemical fungicides. Pestology 20(8):20–23

    Google Scholar 

  • Srivastava VK, Thakre RP (1997) Prevalance of sooty mould on ‘nagpur’ mandarin orange (Citrus reticulata blanco). Pestology 11(9):44–49

    Google Scholar 

  • Stadler M, Kuhnert E, Peršoh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus- One Name” (1F1N) Concept. Mycol Int J Fungal Biol 4:5–21

    CAS  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771

    Google Scholar 

  • Stover RH (1975) Sooty moulds of bananas. Trans Br Mycol Soc 65:328–330

    Google Scholar 

  • Summy KR, Little CR (2008) Using color infrared imagery to detect sooty mold and fungal pathogens of glasshouse-propagated plants. HortSci 43(5):1485–1491

    Google Scholar 

  • Szwedo J, Nel A (2011) The oldest aphid insect from the Middle Triassic of the Vosges, France. Acta Palaeontol Pol 56(4):757–766

    Google Scholar 

  • Tellenbach C, Gruenig CR, Sieber TN (2010) Suitability of quantitative real-time pcr to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76(17):5764–5772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theissen F (1916) Mykologische Abhandlungen. Verh. der Kaiserlich–Koniglichen Zoologisch–Botanischen Gesell. Wien 66:296–400

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tubaki K (1957) Studies on the Japanese hyphomycetes. (III) Aquatic group. Bull Nat Sci Mus Tokyo 3:249–268

    Google Scholar 

  • Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 56:157–171

    Google Scholar 

  • Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.) – different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113(5):645–654

    PubMed  Google Scholar 

  • Van Wyk PS, Marasas WFO, Baard SW, Knox-davies PS (1985) Helicosingula, a new genus of dematiaceous hyphomycetes on Leucadendron tinctum in South Africa. Trans Br Mycol Soc 85:183–187

    Google Scholar 

  • Voglmayr H, Mayer V, Maschwitz U, Moog J, Djieto-Lordon C, Blatrix R (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115(10):1077–1091

    PubMed  Google Scholar 

  • von Arx JA, Müller E (1975) A re-evaluation of the bitunicate Ascomycetes with keys to families and genera. Stud Mycol 9:1–159

    Google Scholar 

  • Wardhaugh CW, Didham RK (2006) Preliminary evidence suggests that beech scale insect honeydew has a negative effect on terrestrial litter decomposition rates in Nothofagus forests of New Zealand. N Z J Ecol 30(2):279–284

    Google Scholar 

  • Webster J, Weber RWS (2007) Introduction to fungi, 3rd edn. Cambridge University Press, UK

    Google Scholar 

  • Wikee S, Udayanga D, Crous PW, Chukeatirote E, Eric HC, Bahkali AH, Dai DQ, Hyde KD (2011) Phyllosticta—an overview of current status of species recognition. Fungal Divers 51:43–61

    Google Scholar 

  • Wingfield MJ, de Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus one name promotes progressive plant pathology. Mol Plant Pathol 6:604–613

    Google Scholar 

  • Winka K, Eriksson O, Bång A (1998) Molecular evidence for recognizing the Chaetothyriales. Mycologia 90(5):822–830

    CAS  Google Scholar 

  • Woronichin NN (1925) Über die Capnodiales. Ann Mycol 23(1–2):174–178

    Google Scholar 

  • Woronichin NN (1926) Zur Kenntnis der Morphologie und Systematik der Russtaupilze Transkaukasiens. Ann Mycol 24:231–264

    Google Scholar 

  • Yamamoto W (1956) Taxonomic studies on the Capnodiaceae. III. On the species of the Chaetothyria. Ann Phytopathol Soc Jpn 21(4):167–170

    Google Scholar 

  • Yang H, Chomnunti P, Ariyawansa H, Wu HX, Hyde KD (2013) The genus Phaeosaccardinula (Chaetothyriales) from Yunnan, China, introducting two new species (in press)

  • Zopf W (1879) Die Konidienfrucht von Fumago. Nova Acta Academie Caesaraeae Leopoldina Carolinea German Naturae Curiosum 40:255–329

    Google Scholar 

Download references

Acknowledgments

This work was carried out using a grant to the first author by the Office of the Higher Education Commission of Thailand. We would like to thank DJ Bhat who encouraged and advised on many parts of this paper; Cecile Gueidan who advised on the phylogeny part; Saranyaphat Boonmee for observing herbarium specimens from BPI; and Bevan Weir and Patrick Garvey for discussions and comments on next generation sequencing and NZ sooty moulds sections. The curator of K and PDD are especially thanked for loaning herbarium specimens. H. Voglmayr & W. Jaklitsch are thanked for supplying a fresh collection. Additional support is also from the CGIAR Research Program 6: Forests, Trees and Agroforestry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchu Xu or Kevin D. Hyde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B. et al. The sooty moulds. Fungal Diversity 66, 1–36 (2014). https://doi.org/10.1007/s13225-014-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-014-0278-5

Keywords

Navigation