Skip to main content
Log in

Numerical solution of the nonlinear conformable space–time fractional partial differential equations

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a numerical approach for solving the nonlinear space-time fractional partial differential equations with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind and finite difference method. The proposed scheme reduces the main problem to a system of nonlinear algebraic equations. The validity and the applicability of the proposed technique are shown by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Bagley, P.J. Torvik. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984) 294-298.

    Article  MATH  Google Scholar 

  2. I. Podlubny. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus. App. Anal. 5 (2002) 367 - 386.

    MathSciNet  MATH  Google Scholar 

  3. I. Podlubny. Fractional differential equations, Academic press, New York, 1999.

    MATH  Google Scholar 

  4. F. Mainardi. Fractional calculus: Some basic problems in continuum and statistical mechanics, In: A. Carpinteri, F. Mainardi, Editors, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  5. M.D. Thomas and P.B. Bamforth, Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cem. Concr. Res.29 (4) (1999) 487-495.

    Article  Google Scholar 

  6. A. Khitab, S. Lorente, and J.P. Ollivier, Predictive model for chloride penetration through concrete. Mag. Concr. Res. 57 (9) (2005) 511-520.

    Article  Google Scholar 

  7. M.A. Firoozjaee, S.A. Yousefi. A numerical approach for fractional partial differential equations by using Ritz approximation. Appl. Math. Comput. 338 (2018) 711-721.

    MathSciNet  MATH  Google Scholar 

  8. H. Dehestani, Y. Ordokhani, M. Razzaghi. Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336 (2018) 433-453.

    MathSciNet  MATH  Google Scholar 

  9. Shaher Momani, Zaid Odibat. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor’s formula. J. Comput. Appl. Math. 220 (2008) 85-95.

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Saeed, M. Rehman. Haar wavelet Picard method for fractional nonlinear partial differential equations. Appl.Math.Comput. 264 (2015) 310-322.

    MathSciNet  MATH  Google Scholar 

  11. T. A. Biala, A. Q. M. Khaliq. Parallel algorithms for nonlinear time-space fractional parabolic PDEs. J. Comput. Phys. 375 (2018) 135-154.

    Article  MathSciNet  MATH  Google Scholar 

  12. M.M. Khader, K. M. Saad. A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos Soliton Fract. 110 (2018) 169-177.

    Article  MathSciNet  MATH  Google Scholar 

  13. Z.Odibat, S. Momani. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 32 (2008) 28-39.

    Article  MATH  Google Scholar 

  14. Z. Mohamed, T. M. Elzaki. Applications of new integral transform for linear and nonlinear fractional partial differential equations. J. King Saud Univ. Sci. 2018

    Google Scholar 

  15. S. Zhang, S. Hong. Variable separation method for a nonlinear time fractional partial differential equation with forcing term. J. Comput. Appl. Math. 339 (2018) 297-305.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Demir, M. A. Bayrak, E. Ozbilge. An Approximate Solution of the Time-Fractional Fisher Equation with Small Delay by Residual Power Series Method. Math. Probl. Eng. 2018 (2018) 1-8.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. M. Nagy. Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method. Appl.Math.Comput. 310 (2017) 139-148.

    MathSciNet  MATH  Google Scholar 

  18. A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu. Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations. Chaos Soliton Fract. 116 (2018) 220-226.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Prakash, S. Harikrishnan, M. Benchohra. Oscillation of certain nonlinear fractional partial differential equation with damping term. Appl. Math. Lett. 43 (2015) 72-79.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new defnition of fractional derivative. J. Comput. Appl. Math. 264 (2014) 65-70.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Abdeljawad. On conformable fractional calculus. J. Comput. Appl. Math. 279 (2015) 57-66.

    Article  MathSciNet  MATH  Google Scholar 

  22. Q. Feng. A new approach for seeking coefficient function solutions of conformable fractional partial differential equations based on the Jacobi elliptic equation. Chinese J. Phys. 56 (2018) 2817-2828.

    Article  Google Scholar 

  23. C. Chen, Y. L. Jiang. Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 75 (2018) 2978-2988.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Hosseini, R. Ansari. New exact solutions of nonlinear conformable time- fractional Boussinesq equations using the modified Kudryashov method. Wave Random Complex. 27 (2017) 628-636.

    Article  MathSciNet  Google Scholar 

  25. Abdelsalam UM. Exact travelling solutions of two coupled (2 + 1)-Dimensional Equations. J. Egyptian Math. Soc. 25 (2017) 125-128.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Thabet, S. Kendre. Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Soliton Fract. 109 (2018) 238-245.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Yang. Solving a Nonlinear Multi-Order Fractional Differential Equation Using Legendre Pseudo-Spectral Method. AM 4 (2013) 113-118.

    Article  Google Scholar 

  28. F. Mohammadi and C. Cattani. A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J. Comput. Appl. Math. 339 (2018) 306-316.

    Article  MathSciNet  MATH  Google Scholar 

  29. E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35 (2011) 5662-5672.

    Article  MathSciNet  MATH  Google Scholar 

  30. N.H. Sweilam, A.M. Nagy, A. A. El-Sayed. Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Soliton Fract. 73 (2015) 141-147.

    Article  MathSciNet  MATH  Google Scholar 

  31. N.H. Sweilam, A.M. Nagy, A. A. El-Sayed. On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. J. King Saud Univ. Sci. 28 (2016) 41-47.

    Article  Google Scholar 

  32. N.H. Sweilam, A.M. Nagy, A. A. El-Sayed. Numerical approach for solving space fractional order diffusion equations using shifted Chebyshev polynomials of the fourth kind. Turk J. Math. 40 (2016) 1283-1297.

    Article  MathSciNet  MATH  Google Scholar 

  33. M.M. Khader. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 2535-42.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Azizi, G.B. Loghmani. Numerical approximation for space fractional diffusion equations via Chebyshev finite difference method. J. Fract. Ca.l Appl. 4 (2013) 303-311.

  35. H. Azizi, G.B. Loghmani. A numerical method for space fractional diffusion equations using a semi-disrete scheme and Chebyshev collocation method. J. Math. Comput. Sci. 8 (2014) 226-235.

    Article  Google Scholar 

  36. A. Saadatmandia, M. Dehghan. A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62 (2011) 1135-1142.

    Article  MathSciNet  MATH  Google Scholar 

  37. X.Li, C. Xu. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 247 (2009) 2108-2131.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Piret, E. Hanert. A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 14 (2012) 71-81.

    MathSciNet  MATH  Google Scholar 

  39. M.M. Khader. An efficient approximate method for solving linear fractional Klein-Gordon equation based on the generalized Laguerre polynomials. Int. J. Comput. Math. 90 (2013) 1853-1864.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. C. Yaslan. Numerical solution of the conformable space-time fractional wave equation. Chinese J. Phys. 56 (2018) 2916-2925.

    Article  MathSciNet  Google Scholar 

  41. J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall, CRC, New York, NY, Boca Raton, 2003.

    MATH  Google Scholar 

  42. Wazwaz AM, Gorguis A. An analytic study of Fishers equation by using Adomian decomposition method. Appl. Math. Comput. 154 (2004) 609-20.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Çerdik Yaslan.

Additional information

Communicated by G.D. Veerappa Gowda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaslan, H.Ç. Numerical solution of the nonlinear conformable space–time fractional partial differential equations. Indian J Pure Appl Math 52, 407–419 (2021). https://doi.org/10.1007/s13226-021-00057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00057-0

Keywords

Mathematics Subject Classification

Navigation