Skip to main content
Log in

Anthocyanin-Loaded Liposomes Prepared by the pH-Gradient Loading Method to Enhance the Anthocyanin Stability, Antioxidation Effect and Skin Permeability

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Oxidative stress is caused by reactive oxygen species (ROS) and is related to skin cancer and aging. Although anthocyanin is an effective antioxidant, has poor skin permeability and is vulnerable to temperature and pH, a suitable formulation is required. We prepared a pH-gradient loading method to prepare anthocyanin-loaded liposomes because liposomes prepared by the remote loading method exhibit high loading efficiency without anthocyanin damage. The liposome formulation could enhance anthocyanin stability, antioxidation activity and skin permeability. To compare these features, nonformulated anthocyanin (NFA) and anthocyanin-loaded liposomes prepared by the passive loading method were used as control groups. Anthocyanin-loaded HSPC liposomes prepared by the remote loading method (RAH liposomes) exhibited markedly enhanced loading efficiency (71.2%) and anthocyanin stability (85.4%) compared with control groups. The antioxidation activity of RAH liposomes was 2.1- and 1.7-fold greater than NFA and passive loading of anthocyanin in HSPC liposomes (PAH liposomes), respectively. The skin permeability of RAH liposomes was enhanced 2.9- and 2.2-fold compared with NFA and PAH liposomes, respectively. RAH liposomes maintained anthocyanin stability under in vitro physiological conditions for 14 days and exhibited enhanced ROS scavenging activity and skin permeability. Therefore, RAH liposomes represent a platform for effective anthocyanin loading and exhibited promising application for pharmaco-cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Matés, C. Pérez-Gómez, and I. N. J. C. B. De Castro, Clin. Chem., 32, 595 (1999).

    Google Scholar 

  2. H.-U. Simon, A. Haj-Yehia, and F. J. A. Levi-Schaffer, Apoptosis, 5, 415 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. M. Ott, V. Gogvadze, S. Orrenius, and B. Zhivotovsky, Apoptosis, 12, 913 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. C. S. Sander, F. Hamm, P. Elsner, and J. J. Thiele, Brit. J. Dermatol., 148, 913 (2003).

    Article  CAS  Google Scholar 

  5. M. Rinnerthaler, J. Bischof, M. K. Streubel, A. Trost and K. Richter, Biomolecules, 5, 545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. X. Yun, V. D. Maximov, J. Yu, H. Zhu, A. A. Vertegel, and M. S. Kindy, J. Cerebr. Blood F. Met., 33, 583 (2013).

    Article  CAS  Google Scholar 

  7. L. George, M. C. Bavya, K. V. Rohan and R. Srivastava, Colloid Surf. B, 160, 315 (2017).

    Article  CAS  Google Scholar 

  8. J. Chen, N. Wei, M. Lopez-Garcia, D. Ambrose, J. Lee, C. Annelin, and T. Peterson, Eur. J. Pharm. Biopharm., 117, 286 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. C. K. Kim, T. Kim, I. Y. Choi, M. Soh, D. Kim, Y. J. Kim, H. Jang, H. S. Kim and H. K. Park, Angew. Chem. Int. Ed., 51, 11039 (2012).

    Article  CAS  Google Scholar 

  10. X. Wu, L. Gu, R. L. Prior, and S. McKay, J. Agr. Food Chem., 52, 7846 (2004).

    Article  CAS  Google Scholar 

  11. P. N. Denev, C. G. Kratchanov, M. Ciz, A. Lojek, and M. G. Kratchanova, Compr. Rev. Food Sci. F., 11, 471 (2012).

    Article  CAS  Google Scholar 

  12. J. M. Kong, L. S. Chia, N. K. Goh, T. F. Chia, and R. Brouillard, Phytochemistry, 64, 923 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. O. Dangles and J. A. Fenger, Molecules, 23, 1970 (2018).

    Article  PubMed Central  Google Scholar 

  14. D. Jeong and K. Na, Carbohydr. Polym., 90, 507 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. S. Zafra-Stone, T. Yasmin, M. Bagchi, A. Chatterjee, J. A. Vinson, and D. Bagchi, Mol. Nutr. Food Res., 51, 675 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. M. P. Kähkönen, J. Heinämäki, V. Ollilainen, and M. Heinonen, J. Sci. Food Agr., 83, 1403 (2003).

    Article  Google Scholar 

  17. Y. Liu, Y. Liu, C. Tao, M. Liu, Y. Pan, and Z. Lv, J. Food Meas. Charact., 12, 1744 (2018).

    Article  Google Scholar 

  18. M.-J. Bermúdez-Soto, F.-A. Tomás-Barberán, and M.-T. J. F. C. García-Conesa, Food Chem., 102, 865 (2007).

    Article  Google Scholar 

  19. E. Gris, E. Ferreira, L. Falcão, and M. Bordignon-Luiz, Food Chem., 100, 1289 (2007).

    Article  CAS  Google Scholar 

  20. Z. Fang and B. J. T. I. F. S. Bhandari, Trends Food Sci. Tech., 21, 510 (2010).

    Article  CAS  Google Scholar 

  21. K. Frank, E. Walz, V. Gräf, R. Greiner, K. Köhler, and H. P. Schuchmann, J. Food Sci., 77, N50 (2012).

    Article  PubMed  Google Scholar 

  22. J. Dua, A. Rana, and A. J. I. J. P. S. R. Bhandari, Int. J. Pharm. Stud Res., 3, 14 (2012).

    Google Scholar 

  23. L. Sercombe, T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood, and S. Hua, Front. Pharmacol., 6, 286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. F. Casanova and L. J. J. O. M. Santos, J. Microencapsul., 33, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki, Nanoscale Res. Lett., 8, 102 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. J. M. Hwang, H. C. Kuo, C. T. Lin, and E. S. Kao, Pharm. Biol., 51, 941 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. A. M. Samuni, A. Lipman, and Y. Barenholz, Chem. Phys. Lipids, 105, 121 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. H. Park, J. Lee, S. Jeong, B. N. Im, M. K. Kim, S. G. Yang, and K. Na, Adv. Healthc. Mater., 5, 3139 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Na.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by Nano-Material Technology Development Program (NRF-2018M3A7B4071235) Through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (MSIT), and supported by the Catholic University of Korea, Research Fund, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Na, K. Anthocyanin-Loaded Liposomes Prepared by the pH-Gradient Loading Method to Enhance the Anthocyanin Stability, Antioxidation Effect and Skin Permeability. Macromol. Res. 28, 289–297 (2020). https://doi.org/10.1007/s13233-020-8039-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8039-7

Keywords

Navigation