Skip to main content
Log in

Post-exercise Response of Arterial Parameters for Arterial Health Assessment Using a Microfluidic Tactile Sensor and Vibration-Model-Based Analysis: A Proof-of-Concept Study

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Objective

Arterial stiffness and endothelial function are two established surrogate markers of subclinical atherosclerosis and are quantified by three arterial parameters: elasticity, viscosity and radius of the arterial wall. Yet, the current methods for their assessment are unsuitable for routine use. Post-exercise response of the cardiovascular (CV) system serves as a more sensitive detection of subclinical arterial abnormalities that are not apparent at-rest. The objective of this study is to propose a novel method that can measure post-exercise response of arterial parameters and is also suitable for routine use.

Approach

A microfluidic tactile sensor with a location-insensitive configuration was used for arterial pulse signal measurements on six asymptomatic male subjects, offering measurement reliability, ease use by a layperson, and affordability. By treating the arterial pulse signal as a vibration signal of the arterial wall, vibration-model-based analysis of only one measured pulse signal with no calibration was conducted for simultaneous estimation of three arterial parameters. Exercise-intensity-normalized percent changes in arterial parameters were utilized to remove the influence of variation in exercise intensity on post-exercise response, and then their measured values were compared for difference in post-exercise response between the subjects.

Main Results

One subject who was obese, on subject who had insomnia, and the oldest subject in the study demonstrated differences in post-exercise response at the radial artery (RA), as compared with the three subjects free of those three factors. Despite a lack of statistical significance, the observed difference at the RA between subjects was supported by (i) their consistency with the related findings in the literature, and (ii) their consistency with the measured values at the carotid artery (CA) and superficial temporal artery (STA) and the anatomical difference between the three arteries.

Significance

The proposed method has the potential of offering an affordable and convenient diagnosis tool for routine arterial health assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Akazawa, N., S. G. Ra, J. Sugawara, and S. Maeda. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women. Front. Physiol. 6:268, 2015.

    Google Scholar 

  2. Anderson, T. J. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can. J. Cardiol. 22:72B–80B, 2006.

    Google Scholar 

  3. Bruno, R. M., E. Bianchini, F. Faita, S. Taddei, and L. Ghiadoni. Intima media thickness, pulse wave velocity, and flow mediated dilation. Cardiovasc. Ultrasound 12:34, 2014.

    Google Scholar 

  4. Buie, J. J., L. S. Watson, C. J. Smith, and C. Sims-Robinson. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol. Dis. 132:104580, 2019.

    Google Scholar 

  5. Bunsawat, K., S. M. Ranadive, A. D. Lane-Cordova, H. Yan, R. M. Kappus, B. Fernhall, et al. The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal-weight individuals. Physiol. Rep. 5:e13226, 2017.

    Google Scholar 

  6. Calvin, A. D., N. Covassin, W. K. Kremers, et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J. Am. Heart Assoc. 3(6):e001143, 2014.

    Google Scholar 

  7. Cincin, A., I. Sari, M. Oguz, S. Sert, M. Bozbay, H. Atas, B. Ozben, K. Tigen, and Y. Basaran. Effect of acute sleep deprivation on heart rate recovery in healthy young adults. Sleep Breath 19:631–636, 2015.

    Google Scholar 

  8. Deschenes, M. R., J. A. Carter, E. N. Matney, M. B. Potter, and M. H. Wilson. Aged men experience disturbances in recovery following submaximal exercise. J. Gerontol. Ser. A 61A(1):63–71, 2006.

    Google Scholar 

  9. Dipla, K., G. P. Nassis, and I. S. Vrabas. Blood pressure control at rest and during exercise in obese children and adults. J. Obes. 2012. https://doi.org/10.1155/2012/147385.

    Article  Google Scholar 

  10. Engin, A. Endothelial dysfunction in obesity. Adv. Exp. Med. Biol. 960:345–379, 2017.

    Google Scholar 

  11. Federaal Kenniscentrum—Centre Fédéral d’Expertise. Non-invasive markers of subclinical atherosclerosis for predicting a primary cardiovascular event: a rapid systematic review. http://kce.fgov.be/publication/report/novel-serum-biomarkers-for-the-prediction-of-cardiovascular-risk#.WNvfcG8rJaR, 2013.

  12. Franklin, N. C., M. Ali, M. Goslawski, E. Wang, and S. A. Phillips. Reduced vasodilator function following acute resistance exercise in obese women. Front. Physiol. 5:253, 2014.

    Google Scholar 

  13. Girerd, X., J.-J. Mourad, C. Acar, D. Heudes, S. Chiche, P. Bruneval, et al. Noninvasive measurement of medium-sized artery intima-media thickness in humans: in vitro validation. J. Vasc. Res. 31:114–120, 1994.

    Google Scholar 

  14. Gonzales, J. U., B. C. Thompson, J. R. Thistlethwaite, and B. W. Scheuermann. Association between exercise hemodynamics and changes in local vascular function following acute exercise. Appl. Physiol. Nutr. Metab. 36:137–144, 2011.

    Google Scholar 

  15. Goyal, G., R. Sharma, S. Joshi, and A. Bhardwaj. Effect of sleep deprivation on heart rate recovery after treadmill testing in otherwise healthy young adults. Natl. J. Physiol. Pharm. Pharmacol. 9(1):19–22, 2019.

    Google Scholar 

  16. Gu, W., P. Cheng, A. Ghosh, Y. Liao, B. Liao, A. Beskok, et al. Detection of distributed static and dynamic loads with electrolyte-enabled distributed transducers in a polymer-based microfluidic device. J. Micromech. Microeng. 23:035015, 2013.

    Google Scholar 

  17. Harold Laughlin, M. Cardiovascular response to exercise. Am. J. Physiol. 277(6 Pt 2):S244–S259, 1999.

    Google Scholar 

  18. Harris, R. A., S. K. Nishiyama, D. W. Wray, and R. S. Richardson. Ultrasound assessment of flow-mediated dilation. Hypertension 55:1075–1085, 2010.

    Google Scholar 

  19. Inaba, Y., J. A. Chen, and S. R. Bergmann. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int. J. Cardiovasc. Imaging 26:631–640, 2010.

    Google Scholar 

  20. Iurciuc, S., A. M. Cimpean, F. Mitu, R. Heredea, and M. Iurciuc. Vascular aging and subclinical atherosclerosis: why such a “never ending” and challenging story in cardiology? Clin. Interv. Aging 12:1339–1345, 2017.

    Google Scholar 

  21. Kim, C. W., Y. Chang, D. Zhao, et al. Sleep duration, sleep quality, and markers of subclinical arterial disease in healthy men and women. Arterioscler. Thromb. Vasc. Biol. 35:2238–2245, 2015.

    Google Scholar 

  22. Liu, H.-B., W.-X. Yuan, K.-R. Qin, and J. Hou. Acute effect of cycling intervention on carotid arterial hemodynamics: basketball athletes versus sedentary controls. Biomed. Eng. Online 14:S17, 2015.

    Google Scholar 

  23. Liu, H.-B., W.-X. Yuan, Q.-Y. Wang, Y.-X. Wang, H.-W. Cao, J. Xu, et al. Carotid arterial stiffness and hemodynamic responses to acute cycling intervention at different times during 12-week supervised exercise training period. BioMed Res. Int. 2018. https://doi.org/10.1155/2018/2907548.

    Article  Google Scholar 

  24. London, G. M., and B. Pannier. Arterial Functions: How to Interpret the Complex Physiology. Oxford: Oxford University Press, 2010.

    Google Scholar 

  25. Michishita, R., M. Ohta, M. Ikeda, Y. Jiang, and H. Yamato. An exaggerated blood pressure response to exercise is associated with nitric oxide bioavailability and inflammatory markers in normotensive females. Hypertens. Res. 39:792–798, 2016.

    Google Scholar 

  26. Millen, A. M., A. J. Woodiwiss, and G. R. Norton. Post-exercise effects on aortic wave reflection derived from wave separation analysis in young-to middle-aged pre-hypertensives and hypertensives. Eur. J. Appl. Physiol. 116:1321–1329, 2016.

    Google Scholar 

  27. Mitchell, G. F., S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505, 2010.

    Google Scholar 

  28. Miyai, N., M. Arita, K. Miyashita, I. Morioka, T. Shiraishi, and I. Nishio. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension 39:761–766, 2002.

    Google Scholar 

  29. Moore, S. M., A. J. Berrones, J. L. Clasey, M. G. Abel, and B. S. Fleenor. Arterial hemodynamics are impaired at rest and following acute exercise in overweight young men. Vasc. Med. 21:497–505, 2016.

    Google Scholar 

  30. Mudau, M., A. Genis, A. Lochner, and H. Strijdom. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc. J. Africa 23:222, 2012.

    Google Scholar 

  31. Munakata, M. Brachial-ankle pulse wave velocity: background, method, and clinical evidence. Pulse 3:195–204, 2015.

    Google Scholar 

  32. Mutter, A. F., A. B. Cooke, O. Saleh, Y.-H. Gomez, and S. S. Daskalopoulou. A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments. Hypertens. Res. 40:146, 2017.

    Google Scholar 

  33. O’Rourke, M. F., and G. Mancia. Arterial stiffness. J. Hypertens. 17:1–4, 1999.

    Google Scholar 

  34. O’Rourke, M. F., A. Pauca, and X. J. Jiang. Pulse wave analysis. Br. J. Clin. Pharmacol. 51:507–522, 2001.

    Google Scholar 

  35. Pereira, T., C. Correia, and J. Cardoso. Novel methods for pulse wave velocity measurement. J. Med. Biol. Eng. 35:555–565, 2015.

    Google Scholar 

  36. Perissiou, M., T. G. Bailey, M. Windsor, M. C. Y. Nam, K. Greaves, A. S. Leicht, et al. Effects of exercise intensity and cardiorespiratory fitness on the acute response of arterial stiffness to exercise in older adults. Eur. J. Appl. Physiol. 118:1673–1688, 2018.

    Google Scholar 

  37. Phillips, S. A., E. Das, J. Wang, K. Pritchard, and D. D. Gutterman. Resistance and aerobic exercise protects against acute endothelial impairment induced by a single exposure to hypertension during exertion. J. Appl. Physiol. 110:1013–1020, 2011.

    Google Scholar 

  38. Reddy, S., P. Kumar, and K. Prasad. Histomorphometric and sympathetic innervation of the human superficial temporal artery. Indian J. Plast. Surg. 44:127, 2011.

    Google Scholar 

  39. Roca, F., J. Bellien, M. Iacob, and R. Joannides. Endothelium-dependent adaptation of arterial wall viscosity during blood flow increase is impaired in essential hypertension. Atherosclerosis 285:102–107, 2019.

    Google Scholar 

  40. Roca, F., M. Iacob, I. Remy-Jouet, J. Bellien, and R. Joannides. Evidence for a role of vascular endothelium in the control of arterial wall viscosity in humans. Hypertension 71:143–150, 2018.

    Google Scholar 

  41. Routledge, F. S., S. B. Dunbar, M. Higgins, A. E. Rogers, C. Feeley, O. Ioachimescu, K. Euwer, D. Eapen, and A. Quyyumi. Insomnia symptoms are associated with abnormal endothelial function. J. Cardiovasc. Nurs. 32:78–85, 2017.

    Google Scholar 

  42. Saba, P., C. Cavallini, D. Scorzoni, C. Longhini, R. Pini, and A. Ganau. Arterial tonometry: principles and clinical applications in hypertension. High Blood Press. Cardiovasc. Prev. 5:241–250, 1996.

    Google Scholar 

  43. Sauvet, F., G. Leftheriotis, and D. Gomez-Merino. Effect of acute sleep deprivation on vascular function in healthy subjects. J. Appl. Physiol. 108(1):68–75, 2010.

    Google Scholar 

  44. Shim, C. Y., W.-I. Yang, S. Park, M.-K. Kang, Y.-G. Ko, D. Choi, et al. Overweight and its association with aortic pressure wave reflection after exercise. Am. J. Hypertens. 24:1136–1142, 2011.

    Google Scholar 

  45. Singh, P., M. I. Choudhury, S. Roy, and A. Prasad. Computational study to investigate effect of tonometer geometry and patient-specific variability on radial artery tonometry. J. Biomech. 58:105–113, 2017.

    Google Scholar 

  46. Stapleton, P. A., M. E. James, A. G. Goodwill, and J. C. Frisbee. Obesity and vascular dysfunction. Pathophysiology 15:79–89, 2008.

    Google Scholar 

  47. Stratton, J., W. Levy, M. Cerqueira, R. Schwartz, and I. Abrass. Cardiovascular responses to exercise effects of aging and exercise training in healthy men. Circulation 89:1648–1655, 1994.

    Google Scholar 

  48. Sunbul, M., B. G. Kanar, E. Durmus, T. Kivrak, and I. Sari. Acute sleep deprivation is associated with increased arterial stiffness in healthy young adults. Sleep Breath 18(1):215–220, 2014.

    Google Scholar 

  49. Teng, X.-F., and Y.-T. Zhang. Theoretical study on the effect of sensor contact force on pulse transit time. IEEE Trans Biomed Eng. 54:1490–1498, 2007.

    Google Scholar 

  50. Wang, D., L. Reynolds, T. Alberts, L. Vahala, and Z. Hao. Model-based analysis of arterial pulse signals for tracking changes in arterial wall parameters: a pilot study. Biomech Model Mechanobiol 18:1629–1638, 2019.

    Google Scholar 

  51. Wang, D., J. Shen, L. Mei, S. Qian, J. Li, and Z. Hao. Performance investigation of a wearable distributed-deflection sensor in arterial pulse waveform measurement. IEEE Sens. J. 17:3994–4004, 2017.

    Google Scholar 

  52. Wang, D., L. Vahala, and Z. Hao. Radial and longitudinal motion of the arterial wall: their relation to pulsatile pressure and flow in the artery. Phys. Rev. E. 98:032402, 2018.

    Google Scholar 

  53. Yan, H., S. M. Ranadive, K. S. Heffernan, A. D. Lane, R. M. Kappus, M. D. Cook, et al. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise. Am. J. Physiol. Heart Circul. Physiol. 306:H60–H68, 2013.

    Google Scholar 

  54. Yang, W. I., J. S. Kim, S. H. Kim, J. Y. Moon, J. H. Sung, I. J. Kim, S. W. Lim, D. H. Cha, and S. Y. Cho. An exaggerated blood pressure response to exercise is associated with subclinical myocardial dysfunction in normotensive individuals. J. Hypertens. 32(9):1862–1869, 2014.

    Google Scholar 

  55. Yoboah, J., A. Folsom, G. Burke, C. Johnson, J. Polak, W. Post, et al. Predictive value of brachial flow mediated dilation for incident cardiovascular events in a population-based study. Circulation 120:502–509, 2009.

    Google Scholar 

  56. Yzaguirre, I., G. Grazioli, M. Domenech, A. Vinuesa, R. Pi, J. Gutierrez, A. Coca, J. Brugada, and M. Sitges. Exaggerated blood pressure response to exercise and late-onset hypertension in young adults. Blood Press. Monit. 22(6):339–344, 2017.

    Google Scholar 

  57. Zebekakis, P. E., T. Nawrot, L. Thijs, E. J. Balkestein, J. van der Heijden-Spek, L. M. Van Bortel, H. A. Struijker-Boudier, M. E. Safar, and J. A. Staessen. Obesity is associated with increased arterial stiffness from adolescence until old age. J. Hypertens. 23:1839–1846, 2005.

    Google Scholar 

  58. Zhang, B., J. Gu, M. Qian, L. Niu, and D. Ghista. Study of correlation between wall shear stress and elasticity in atherosclerotic carotid arteries. Biomed. Eng. Online 17:5, 2018.

    Google Scholar 

Download references

Acknowledgment

This study was approved by the Institutional Review Board (IRB) of Old Dominion University).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Hao.

Additional information

Associate Editor Zhongjun Wu oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Wang, D. & Reynolds, L. Post-exercise Response of Arterial Parameters for Arterial Health Assessment Using a Microfluidic Tactile Sensor and Vibration-Model-Based Analysis: A Proof-of-Concept Study. Cardiovasc Eng Tech 11, 295–307 (2020). https://doi.org/10.1007/s13239-020-00454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00454-2

Keywords

Navigation