Skip to main content
Log in

Necrosis inhibitor-5 (NecroX-5), attenuates MPTP-induced motor deficits in a zebrafish model of Parkinson’s disease

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

In the present study, necrosis inhibitor-5 (NecroX-5), a novel Cyclopentylamino carboxymethylthiazolylindole (NecroX) series compound was investigated for its protective role against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a zebrafish model of Parkinson’s disease (PD). MPTP-induced locomotor behavior was measured in zebrafish larvae and the protein expression level of tyrosine hydroxylase (TH) was estimated in zebrafish larva homogenates. MPTP (15 μM) induced a significant (p < 0.05) impairment in zebrafish larvae locomotor behavior. Treatment with NecroX-5 at various doses (3.75, 7.5 and 15 μM) significantly and dose dependently (p < 0.05) restored MPTP-induced locomotor impairments in zebrafish larvae. Further, NecroX-5 significantly attenuated the MPTP-induced decrease in zebrafish TH protein expression levels. The effects observed by NecroX-5 were almost two fold higher when compared with the antioxidant, minocycline. In conclusion, the neuroprotective activity exhibited by NecroX-5 by attenuating MPTP-induced locomotor impairments and dopaminergic TH expression in zebrafish warrants further development of NecroX-5 as a novel neuroprotectant in the treatment of neurodegenerative disorders including PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P (2004) Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88:443–453

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2(5):325–334

    Article  CAS  PubMed  Google Scholar 

  • Bentivoglio M, Morelli M (2005) The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. In: Dunnett SB, Bentivoglio M, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 1–107

    Google Scholar 

  • Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    Article  PubMed Central  PubMed  Google Scholar 

  • Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG (2008) The pathophysiological basis of dystonias. Nat Rev Neurosci 9:222–234

    Article  CAS  PubMed  Google Scholar 

  • Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864

    Article  CAS  PubMed  Google Scholar 

  • Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62:2484–2487

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Koo SY, Ahn B-H et al (2010) NecroX as a novel class of mitochondrial reactive oxygen species and ONOO scavenger. Arch Pharm Res 33:1813–1823

    Article  CAS  PubMed  Google Scholar 

  • Li W, Mak M, Jiang H, Wang Q, Pang Y, Chen K, Han Y (2009) Novel anti-Alzheimer’s dimer bis(7)-cognitin: cellular and molecular mechanisms of neuroprotection through multiple targets. Neurother J Am Soc Exp Neurother 6:187–201

    Article  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Ma PM (2003) Catecholaminergic systems in the zebrafish. IV. Organization and projection pattern of dopaminergic neurons in the diencephalon. J Comp Neurol 460:13–37

    Article  CAS  PubMed  Google Scholar 

  • McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 141:128–137

    Article  CAS  PubMed  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Park MK, Lee BD, Chae SW, Chi J, Kwon SK, Song J-J (2012) Protective effect of NecroX, a novel necroptosis inhibitor, on gentamicin-induced ototoxicity. Int J Pediatr Otorhinolaryngol 76:1265–1269

    Article  PubMed  Google Scholar 

  • Parng C, Roy NM, Ton C, Lin Y, McGrath P (2007) Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods 55:103–112

    Article  CAS  PubMed  Google Scholar 

  • Poli A, Guarnieri T, Facchinetti F, Villani L (1990) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in goldfish brain. Brain Res 534:45–50

    Article  CAS  PubMed  Google Scholar 

  • Raslan AA, Kee Y (2013) Tackling neurodegenerative diseases: animal models of Alzheimer’s disease and Parkinson’s disease. Genes Genomics 35:425–440

    Article  CAS  Google Scholar 

  • Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889:316–330

    Article  CAS  PubMed  Google Scholar 

  • Rink E, Wullimann MF (2002) Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 137:89–100

    Article  CAS  PubMed  Google Scholar 

  • Sallinen V, Torkko V, Sundvik M, Reenilä I, Khrustalyov D, Kaslin J, Panula P (2009) MPTP and MPP + target specific aminergic cell populations in larval zebrafish. J Neurochem 108:719–731

    Article  CAS  PubMed  Google Scholar 

  • Schapira AHV, Bezard E, Brotchie J et al (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer J, Lohr H, Filippi A, Driever W (2012) Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol 72:256–268

    Article  CAS  PubMed  Google Scholar 

  • Souza BR, Romano-Silva MA, Tropepe V (2011) Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae. J Neurosci Off J Soc Neurosci 31:5512–5525

    Article  CAS  Google Scholar 

  • Thu VT, Kim H-K, Long LT et al (2012) NecroX-5 prevents hypoxia/reoxygenation injury by inhibiting the mitochondrial calcium uniporter. Cardiovasc Res 94:342–350

    Article  CAS  PubMed  Google Scholar 

  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61:1191–1206

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MBH (2010) Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 92:330–344

    Article  CAS  PubMed  Google Scholar 

  • Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The National Research Foundation of Korea (NRF-2010-0012391) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Gil Kim.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest.

Additional information

Jun-Cheng Liu and Sushruta Koppula contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JC., Koppula, S., Huh, SJ. et al. Necrosis inhibitor-5 (NecroX-5), attenuates MPTP-induced motor deficits in a zebrafish model of Parkinson’s disease. Genes Genom 37, 1073–1079 (2015). https://doi.org/10.1007/s13258-015-0364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0364-4

Keywords

Navigation