Skip to main content
Log in

Natural variation in glycine-rich region of Brassica oleracea cold shock domain protein 5 (BoCSDP5) is associated with low temperature tolerance

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Low temperature (LT) or cold stress is a major environmental stress that seriously affects plant growth and development, limiting crop productivity. Cold shock domain proteins (CSDPs), which are present in most living organism, are involved in RNA metabolisms influencing abiotic stress tolerance.

Objective

The aims of this study are to identify target gene for LT-tolerance, like CSDPs, characterize genetics, and develop molecular marker distinguishing LT-tolerance in cabbage (Brassica oleracea var. capitata).

Methods

Semi-quantitative RT-PCR or qRT-PCR was used in gene expression study. LT-tolerance was determined by electrolyte leakage and PCR with allelic specific primers.

Results

Allelic variation was found in BoCSDP5 coding sequence (CDs) between LT-tolerant (BN106 and BN553) and -susceptible inbred lines (BN107 and BN554). LT-tolerant inbred lines contained variant type of BoCSDP5 (named as BoCSDP5v) which encodes extra CCHC zinc finger domain at C-terminus. Association of LT-tolerance with BoCSDP5v was confirmed by electrolyte leakage and segregation using genetic population derived from BN553 and BN554 cross. Allelic variation in BoCSDP5 gene does not influence the rate of gene expression, but produces different proteins with different number of CCHC zinc finger domains. LT-tolerance marker designed on the basis of polymorphism between BoCSDP5 and BoCSDP5v was confirmed with samples used in previous B. oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) marker validation.

Conclusions

LT-tolerant allele (BoCSDP5v) is dominant and independent of CBF pathway, and sufficient to generate molecular markers to identify LT-tolerant cabbage when it is used in combination with another marker, like BoCCA1-derived one. Production and analysis of overexpressing plants of BoCSDP1, BoCSDP3, BoCSDP5 and BoCSDP5v will be required for elucidating the function of CCHC zinc finger domains in LT-tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR (2020) Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03518-7

    Article  PubMed  Google Scholar 

  • Ahmed NU, Jung HJ, Park JI, Cho YG, Hur Y, Nou IS (2015) Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea. Gene 554:215–223

    CAS  PubMed  Google Scholar 

  • Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–18

    CAS  PubMed  Google Scholar 

  • Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV (2020) Cold shock domain proteins: structure and interaction with nucleic acids. Biochemistry 85:S1–S19

    CAS  PubMed  Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 269:23074–23078

    Google Scholar 

  • Calkins JB, Swanson BT (1990) The distinction between living and dead plant tissue-viability tests in cold hardness research. Cryobiology 27:194–211

    Google Scholar 

  • Chaikam V, Karlson D (2010) Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep 43:1–8

    CAS  PubMed  Google Scholar 

  • Choi MJ, Park YR, Park SJ, Kang H (2015) Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. Plant Physiol Biochem 96:132–140

    CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA 108:7241–7246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Yi H, Lee J, Nou IS, Han CT, Hur Y (2015) Global gene expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS One 10:e0130451

    PubMed  PubMed Central  Google Scholar 

  • Floris M, Mahgoub H, Lanet L, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 10:3168–3185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fusaro A, Mangeon A, Rocha C, Junqueira R, Coutinho T, Margis R, SachettoMartins G (2001) Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ETSs) encoding glycine-rich proteins (GRPs). Genet Mol Biol 24:263–273

    CAS  Google Scholar 

  • Gehan MA, Park S, Gilmour SJ, An C, Lee CM, Thomashow MF (2015) Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J 84:682–693

    CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290

    CAS  PubMed  Google Scholar 

  • Huerta-Cepas J, Serra F, Bork P (2016) ETE3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33:1635–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635

    CAS  PubMed  Google Scholar 

  • Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36:1–35

    CAS  PubMed  Google Scholar 

  • Juntawong P, Sorenson R, Bailey-Serres J (2013) Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. Plant J 74:1016–1028

    CAS  PubMed  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    CAS  PubMed  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinge EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    PubMed  Google Scholar 

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9:201–210

    CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    CAS  PubMed  Google Scholar 

  • Lee K, Kang H (2016) Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol Cells 39:179–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Dong X, Choi K, Song H, Yi H, Hur Y (2020) Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis. Genes Genom 42:13–24

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lorković ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    PubMed  PubMed Central  Google Scholar 

  • Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    PubMed  Google Scholar 

  • Ma L, Xie B, Hong Z, Verma DP, Zhang Z (2008) A novel RNA-binding protein associated with cell plate formation. Plant Physiol 148:223–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maibam P, Nawkar GM, Park JH, Sahi VP, Lee SY, Kang CH (2013) The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int J Mol Sci 14:11527–115243

    PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mao LC, Wang GZ, Zhu CGm, Pang HQ (2007) Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruit. Plant Sci 172:400–405

    CAS  Google Scholar 

  • Mao D, Yu L, Chen D, Li L, Zhu Y, Xiao Y, Zhang D, Chen C (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128:1359–1371

    CAS  PubMed  Google Scholar 

  • Matthews JM, Sunde M (2002) Zinc fingers-folds for many occasions. IUBMB Life 54:351–355

    CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    CAS  PubMed  Google Scholar 

  • Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 50:869–878

    CAS  PubMed  Google Scholar 

  • Park SJ, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) The C-terminal zinc finger domain of Arabidopsis cold shock domain proteins is important for RNA chaperone activity during cold adaptation. Phytochemistry 71:543–547

    CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radkova M, Vítámvás P, Sasaki K, Imai R (2014) Development- and cold-regulated accumulation of cold shock domain proteins in wheat. Plant Physiol Biochem 77:44–48

    CAS  PubMed  Google Scholar 

  • Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is an RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

    CAS  PubMed  Google Scholar 

  • Sasaki K, Imai R (2012) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116

    PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Kim MH, Imai R (2013) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. New Phytol 198:95–102

    CAS  PubMed  Google Scholar 

  • Sasaki K, Liu Y, Kim MH, Imai R (2015a) An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance. Plant Signal Behav 10:e1042637

    PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Kim MH, Kanno Y, Seo M, Kamiya Y, Imai R (2015b) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Biophys Res Commun 456:380–384

    CAS  PubMed  Google Scholar 

  • Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15

    CAS  PubMed  Google Scholar 

  • Sieber AN, Longin CF, Leiser WL, Würeschum T (2016) Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat. Theor Appl Genet 129:1087–1097

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular response to drought and cold stress. Curr Opin Biotechnol 7:161–167

    CAS  PubMed  Google Scholar 

  • Song H, Yi H, Han CT, Park JI, Hur Y (2018) Allelic variation in Brassica oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) is associated with freezing tolerance. Hortic Environ Biotechnol 59:423–434

    CAS  Google Scholar 

  • Taranov VV, Zlobin NE, Evlakov KI, Shamustakimova AO, Babakov AV (2018) Contribution of Eutrema salsugineum cold shock domain structure to the interaction with RNA. Biochemistry 83:1369–1379

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    CAS  PubMed  Google Scholar 

  • Tsialikas J, Romer-Seibert J (2015) LIN28: roles and regulation in development and beyond. Development 142:2397–2404

    CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Yang Y, Karlson D (2013) AtCSP1 regulates germination timing promoted by low temperature. FEBS Lett 587:2186–2192

    CAS  PubMed  Google Scholar 

  • Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Garland-Campbell K (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127:1183–1197

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry, and Fisheries (Grant 213007-05-4-SB620), Republic of Korea and a grant from Ministry of Science and ICT (No. 2020-0-01441, Artificial Intelligence Convergence Research Center at Chungnam National University), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hankuil Yi or Yoonkang Hur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Kim, H., Hwang, BH. et al. Natural variation in glycine-rich region of Brassica oleracea cold shock domain protein 5 (BoCSDP5) is associated with low temperature tolerance. Genes Genom 42, 1407–1417 (2020). https://doi.org/10.1007/s13258-020-01010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-01010-x

Keywords

Navigation