Skip to main content

Advertisement

Log in

Expression of PTEN and mTOR in pancreatic neuroendocrine tumors

  • Research Article
  • Published:
Tumor Biology

Abstract

The purposes of this study were to clarify the expression patterns of phosphorylated mammalian target of rapamycin (p-mTOR), mTOR, and phosphatase and tensin homolog (PTEN) in primary pancreatic neuroendocrine tumors (pNETs) and their significance in predicting clinical behaviors and postoperative outcomes. The expressions of p-mTOR, mTOR, and PTEN were assessed in 20 normal pancreatic islets and in 90 resectable pNETs using immunohistochemistry. The associations of the biomarker expressions with clinicopathologic variables and survival duration were analyzed. The percentages of G1, G2, and G3 tumors were 54.4, 43.3, and 2.2 %, respectively. A strongly positive staining was observed for both mTOR and PTEN in normal pancreatic islets, whereas negative staining was observed for p-mTOR. In primary pNETs, the mTOR and p-mTOR positive rates were 70.8 % (63/89) and 44.4 % (40/90), respectively. p-mTOR expressions strongly correlate with mTOR expressions. No significant correlation between p-mTOR and clinicopathological features was found. The high expression rate of PTEN was 56.7 % (51/90), whereas the low expression rate was 43.4 % (39/90). PTEN loss (low expression) was significantly more frequent in patients with advanced WHO grades (p = 0.004) and in patients with higher Ki-67 index (p = 0.002). In our immunohistochemical classification system, the Ki-67 index was significantly higher in the PTEN low expression/p-mTOR-positive subgroup (2.7 ± 2.5) than in the PTEN high expression/p-mTOR-negative subgroup (1.0 ± 1.7, p = 0.006). Patients in the PTEN low expression/p-mTOR-positive subgroup presented a significantly lower 5-year overall survival (OS) than those in the PTEN high expression/p-mTOR-negative subgroup (p = 0.049; 5-year OS = 79 vs. 100 %, HR = 7.0). ENETS TNM staging and major vascular invasion were independently associated factors for predicting the overall survival rate of patients (p = 0.019 and 0.011, respectively). In conclusion, positive p-mTOR expression and PTEN loss may have a synergic effect on tumorigenesis and proliferation; targeted therapy based on mTOR/PTEN signal pathway and its associated molecular mechanism may play a role in the treatment of pancreatic neuroendocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol. 2005;19:753–81.

    Article  PubMed  Google Scholar 

  2. Plockinger U, Rindi G, Arnold R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology. 2004;80:394–424.

    Article  CAS  PubMed  Google Scholar 

  3. Oberg K. Pancreatic endocrine tumors. Semin Oncol. 2010;37:594–618.

    Article  PubMed  Google Scholar 

  4. Clawson GA. From devils to jobs: tracking neuroendocrine tumors. Transl Cancer Res. 2013;2:3–5.

    Google Scholar 

  5. Ito T, Tanaka M, Sasano H, et al. Preliminary results of a Japanese nationwide survey of neuroendocrine gastrointestinal tumors. J Gastroenterol. 2007;42:497–500.

    Article  PubMed  Google Scholar 

  6. Lo RC, Ng IO. Hepatocellular tumors: immunohistochemical analyses for classification and prognostication. Chin J Cancer Res. 2011;23:245–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135:1469–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yao JC, Hassan M, Han A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  9. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.

    Article  CAS  PubMed  Google Scholar 

  10. Nave BT, Ouwens M, Withers DJ, et al. Mammalian target of rapamycin is a direct target of protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344:427–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27:2278–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5:671–88.

    Article  CAS  PubMed  Google Scholar 

  13. Peterson RT, Beal PA, Comb MJ, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000;275:7416–23.

    Article  CAS  PubMed  Google Scholar 

  14. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab. 2007;21:163–72.

    Article  CAS  PubMed  Google Scholar 

  16. von Wichert G, Jehle PM, Hoeflich A, et al. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res. 2000;60:4573–81.

    Google Scholar 

  17. Fang Y, Vilella-Bach M, Bachmann R, et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001;294:1942–5.

    Article  CAS  PubMed  Google Scholar 

  18. Albanell J, Dalmases A, Rovira A, et al. MTOR signaling in human cancer. Clin Transl Oncol. 2007;9:484–93.

    Article  CAS  PubMed  Google Scholar 

  19. Dobashi Y, Watanabe Y, Miwa C, et al. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol. 2011;4:476–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Bjormnsti MA, Houghton PJ. The TOR pathway: a target for cancer chemotherapy. Nat Rev Cancer. 2004;4:335–8.

    Article  Google Scholar 

  21. Mamane Y, Petroulakis E, LeBacquer O, et al. mTOR, translation initiation and cancer. Oncogene. 2006;25:6416–22.

    Article  CAS  PubMed  Google Scholar 

  22. Petroulakis E, Mamane Y, Le Bacquer O, et al. mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer. 2006;94:195–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22:183–98.

    Article  CAS  PubMed  Google Scholar 

  24. Chung DC, Brown SB, Graeme-Cook F, et al. Localization of putative tumor suppressor loci by genome-wide allelotyping in human pancreatic endocrine tumors. Cancer Res. 1998;58:3706–11.

    CAS  PubMed  Google Scholar 

  25. Rigaud G, Missiaglia E, Moore PS, et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res. 2001;61:285–92.

    CAS  PubMed  Google Scholar 

  26. Perren A, Komminoth P, Saremaslani P, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol. 2000;157:1097–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT–mTOR pathway. J Clin Oncol. 2010;28:245–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Crippa S, Partelli S, Boninsegna L, et al. Implications of the new histological classification (WHO 2010) for pancreatic neuroendocrine neoplasms. Ann Oncol. 2012;23:1928.

    Article  CAS  PubMed  Google Scholar 

  30. Rindi G, Klöppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am. 2007;1:575–81.

    Article  Google Scholar 

  32. Noro R, Gemma A, Miyanaga A, et al. PTEN inactivation in lung cancer and the effect of its recovery on treatment with epidermal growth factor tyrosine kinase inhibitors. Int J Oncol. 2007;31:1157–63.

    CAS  PubMed  Google Scholar 

  33. Sos ML, Koker M, Weir BA, et al. PTEN loss contributes to erlotinib resistance in EGFR mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69:3256–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhou CF, Ji J, Yuan F, et al. mTOR activation in well differentiated pancreatic neuroendocrine tumors: a retrospective study on 34 cases. Hepatogastroenterology. 2011;58:2140–3.

    PubMed  Google Scholar 

  35. Chen M, Van Ness M, Guo Y, et al. Molecular pathology of pancreatic neuroendocrine tumors. J Gastrointest Oncol. 2012;3:182–8.

    PubMed Central  PubMed  Google Scholar 

  36. Saeed A, Buell JF, Kandil E. Surgical treatment of liver metastases in patients with neuroendocrine tumors. Ann Transl Med. 2013;1:6.

    PubMed Central  PubMed  Google Scholar 

  37. Shida T, Kishimoto T, Furuya M, et al. Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother Pharmacol. 2010;65:889–93.

    Article  CAS  PubMed  Google Scholar 

  38. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378:2005–12.

    Article  CAS  PubMed  Google Scholar 

  39. Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol. 2006;17:1733–42.

    Article  CAS  PubMed  Google Scholar 

  40. Strosberg JR, Cheema A, Weber JM, et al. Relapse-free survival in patients with nonmetastatic, surgically resected pancreatic neuroendocrine tumors: an analysis of the AJCC and ENETS staging classifications. Ann Surg. 2012;256:321–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant ID 81071740). The authors thank the IPSEN for its editorial support.

Conflicts of interest

The authors indicated no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Ji, Y., Zhao, J. et al. Expression of PTEN and mTOR in pancreatic neuroendocrine tumors. Tumor Biol. 34, 2871–2879 (2013). https://doi.org/10.1007/s13277-013-0849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0849-1

Keywords

Navigation