Skip to main content

Advertisement

Log in

Evaluation of 68Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts

  • Original Article
  • Published:
Tumor Biology

Abstract

The aim of the study is to evaluate the efficacy of 68Ga-labeled iNGR, containing Asn-Gly-Arg (NGR) homing sequence and CendR (R/KXXR/K) penetrating motif, as a new molecular probe for microPET imaging of CD13-positive xenografts. The synthesized iNGR and NGR peptides were conjugated with DOTA and then labeled with 68Ga. 68Ga-iNGR and 68Ga-NGR were compared in the performance of the in vitro stability, partition coefficient, binding affinity, cell uptake analysis, in vivo microPET imaging, and biodistribution studies in CD13-positive HT-1080 and CD13-negative HT-29 cell lines. The in vitro results revealed that both probes exhibited high radiochemical purity and stability, and no significant difference between two probes was observed in terms of the binding affinity to CD13. In vivo microPET/CT imaging showed that the uptake of 68Ga-iNGR in HT-1080 tumor was significantly higher than that of 68Ga−NGR. Moreover, tumor 68Ga-iNGR uptake could be completely blocked by cold NGR and partially blocked by neutralizing NRP-1 antibody. We concluded that 68Ga-iNGR has a higher tumor uptake and better tumor retention than 68Ga-NGR through NRP-1, indicating that CendR motif modification is a promising method for improving NGR peptide performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57. doi:10.1038/35025220.

    Article  CAS  PubMed  Google Scholar 

  2. Pralhad T, Madhusudan S, Rajendrakumar K. Concept, mechanisms and therapeutics of angiogenesis in cancer and other diseases. J Pharm Pharmacol. 2003;55(8):1045–53. doi:10.1211/0022357021819.

    Article  CAS  PubMed  Google Scholar 

  3. Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, et al. Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol. 2001;28(5 Suppl 16):94–104.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Q, Wang J, Zhang H, Zhao D, Zhang Z, Zhang S. Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J Cancer Res Ther. 2015;11(1):223–8. doi:10.4103/0973-1482.138007.

    Article  CAS  PubMed  Google Scholar 

  5. Wickstrom M, Larsson R, Nygren P, Gullbo J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 2011;102(3):501–8. doi:10.1111/j.1349-7006.2010.01826.x.

    Article  PubMed  Google Scholar 

  6. Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, et al. Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res. 2003;9(4):1503–8.

    CAS  PubMed  Google Scholar 

  7. Fukasawa K, Fujii H, Saitoh Y, Koizumi K, Aozuka Y, Sekine K, et al. Aminopeptidase N (APN/CD13) is selectively expressed in vascular endothelial cells and plays multiple roles in angiogenesis. Cancer Lett. 2006;243(1):135–43. doi:10.1016/j.canlet.2005.11.051.

    Article  CAS  PubMed  Google Scholar 

  8. Su L, Cao J, Jia Y, Zhang X, Fang H, Xu W. Development of synthetic aminopeptidase N/CD13 inhibitors to overcome cancer metastasis and angiogenesis. ACS Med Chem Lett. 2012;3(12):959–64. doi:10.1021/ml3000758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corti A, Curnis F, Arap W, Pasqualini R. The neovasculature homing motif NGR: more than meets the eye. Blood. 2008;112(7):2628–35. doi:10.1182/blood-2008-04-150862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, et al. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm. 2013;10(1):417–27. doi:10.1021/mp3005676.

    Article  CAS  PubMed  Google Scholar 

  11. Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, et al. (99m)Tc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids. 2013;44(5):1337–45. doi:10.1007/s00726-013-1469-1.

    Article  CAS  PubMed  Google Scholar 

  12. Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. A direct comparison of tumor angiogenesis with (68)Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids. 2014;46(10):2355–64. doi:10.1007/s00726-014-1788-x.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Lu X, Wan N, Hua Z, Wang Z, Huang H, et al. (68)Ga-DOTA-NGR as a novel molecular probe for APN-positive tumor imaging using MicroPET. Nucl Med Biol. 2014;41(3):268–75. doi:10.1016/j.nucmedbio.2013.12.008.

    Article  CAS  PubMed  Google Scholar 

  14. Mate G, Kertesz I, Enyedi KN, Mezo G, Angyal J, Vasas N, et al. In vivo imaging of Aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer Ga-NOTA-c(NGR). Eur J Pharm Sci. 2015;69C:61–71. doi:10.1016/j.ejps.2015.01.002.

    Article  Google Scholar 

  15. Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67. doi:10.1007/s00726-005-0289-3.

    Article  CAS  PubMed  Google Scholar 

  16. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16(6):510–20. doi:10.1016/j.ccr.2009.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teesalu T, Sugahara KN, Ruoslahti E. Tumor-penetrating peptides. Front Oncol. 2013;3:216. doi:10.3389/fonc.2013.00216.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feron O. Tumor-penetrating peptides: a shift from magic bullets to magic guns. Sci Transl Med. 2010;2(34):34ps26. doi:10.1126/scitranslmed.3001174.

    Article  PubMed  Google Scholar 

  19. Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, et al. De novo design of a tumor-penetrating peptide. Cancer Res. 2013;73(2):804–12. doi:10.1158/0008-5472.CAN-12-1668.

    Article  CAS  PubMed  Google Scholar 

  20. Ye Y, Zhu L, Ma Y, Niu G, Chen X. Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorg Med Chem Lett. 2011;21(4):1146–50. doi:10.1016/j.bmcl.2010.12.112.

    Article  CAS  PubMed  Google Scholar 

  21. Wester HJ. Nuclear imaging probes: from bench to bedside. Clin Cancer Res. 2007;13(12):3470–81. doi:10.1158/1078-0432.CCR-07-0264.

    Article  CAS  PubMed  Google Scholar 

  22. Liu S, Jia B, Qiao R, Yang Z, Yu Z, Liu Z, et al. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application. Mol Pharm. 2009;6(4):1074–82. doi:10.1021/mp900143a.

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, et al. MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol. 2004;6(5):350–9. doi:10.1016/j.mibio.2004.06.004.

    Article  PubMed  Google Scholar 

  24. Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, et al. Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem. 2008;51(24):7980–90. doi:10.1021/jm801134k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Xie X, Yang Y, Zhang H, Mei X. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. J Pharm Sci. 2015;104(4):1328–39. doi:10.1002/jps.24333.

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Chen H, Pan D, Ma Y, Liang S, Wan Y, et al. Imaging integrin alphavbeta 3 and NRP-1 positive gliomas with a novel fluorine-18 labeled RGD-ATWLPPR heterodimeric peptide probe. Mol Imaging Biol. 2014;16(6):781–92. doi:10.1007/s11307-014-0761-0.

    Article  PubMed  Google Scholar 

  27. Menichetti L, Kusmic C, Panetta D, Arosio D, Petroni D, Matteucci M, et al. MicroPET/CT imaging of alphavbeta(3) integrin via a novel (6)(8)Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging. 2013;40(8):1265–74. doi:10.1007/s00259-013-2432-9.

    Article  CAS  PubMed  Google Scholar 

  28. Acevedo LM, Barillas S, Weis SM, Gothert JR, Cheresh DA. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood. 2008;111(5):2674–80. doi:10.1182/blood-2007-08-110205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salikhova A, Wang L, Lanahan AA, Liu M, Simons M, Leenders WP, et al. Vascular endothelial growth factor and semaphorin induce neuropilin-1 endocytosis via separate pathways. Circ Res. 2008;103(6):e71–9. doi:10.1161/CIRCRESAHA.108.183327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Z, Xiang B, Dong D, Wang Z, Li J, Qi X. Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-targeting therapy. Curr Gene Ther. 2014;14(4):289–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 81230033, 81401442, 81227901, and 81371594), the Post-doctoral Science Foundation of China (grant no. 2015M582802), and the Key Science and Technology Program of Shaanxi Province, China (grant no. 2013K12-03-05). No other potential conflict of interest relevant to this article was reported. We would like to thank Prof. Fan Wang from Medical Isotopes Research Center of Peking University (Beijing, China) for her generous support and Guiyu Li and Changhao Liu for their technical assistance in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Kang or Jing Wang.

Ethics declarations

Conflicts of interest

None

Additional information

Mingxuan Zhao, Weidong Yang, Mingru Zhang, Fei Kang and Jing Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Yang, W., Zhang, M. et al. Evaluation of 68Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts. Tumor Biol. 37, 12123–12131 (2016). https://doi.org/10.1007/s13277-016-5068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5068-0

Keywords

Navigation