Skip to main content

Advertisement

Log in

Light-related activities of metal-based nanoparticles and their implications on dermatological treatment

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

MNPs:

Metal-based nanoparticles

MOFs:

Metal-organic frameworks

UV:

Ultraviolet

VIS:

Visible

NIR:

Near-infrared

LSPR:

Localized surface plasmon resonance

PTT:

Photothermal therapy

PDT:

Photodynamic therapy

GRASE:

Generally recognized as safe and effective

PMAA:

Poly (methyl acrylic acid)

ROS:

Reactive oxygen species

MEO:

Metal-enhanced 1O2 generation

BSA:

Bovine serum albumin

PMAA:

Poly (methyl acrylic acid)

References

  1. Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015;17(5):1041–54.

    Article  CAS  Google Scholar 

  2. Kumar N, Tyeb S, Verma V. Recent advances on Metal oxide-polymer systems in targeted therapy and diagnosis: Applications and toxicological perspective. J Drug Deliv Sci Tec. 2021;66: 102814.

    Article  CAS  Google Scholar 

  3. Wang L, Kafshgari MH, Meunier M. Optical properties and applications of plasmonic-metal nanoparticles. Adv Funct Mater. 2020;30(51):2005400.

    Article  CAS  Google Scholar 

  4. Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev. 2019;138:105–16.

    Article  CAS  Google Scholar 

  5. Lu Y, Liu M, Cao Y, Yin J, Zhou H, Yu W, Liu H, Wang J, Huang C, Ma P, Que S, Gong C, Zhao G. Hydrogel sunscreen based on yeast/gelatin demonstrates excellent UV-shielding and skin protection performance. Colloid Surface B. 2021;205: 111885.

    Article  CAS  Google Scholar 

  6. Jian CC, Zhang JQ, Ma XC. Cu-Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles. RSC Adv. 2020;10(22):13277–85.

    Article  CAS  Google Scholar 

  7. Huang X, Mahmudul HM. Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies. Front Biosci (Landmark Ed). 2022;27(2):40.

    Article  CAS  Google Scholar 

  8. Zhi DF, Yang T. O’hagan J, Zhang SB, Donnelly RF. Photothermal therapy J Control Release. 2020;325:52–71.

    Article  CAS  Google Scholar 

  9. Liu DH, Zhao S, Li JM, Chen ML, Wu LS. The application of physical pretreatment in photodynamic therapy for skin diseases. Laser Med Sci. 2021;36(7):1369–77.

    Article  CAS  Google Scholar 

  10. Lee HP, Gaharwar AK. Light-responsive inorganic biomaterials for biomedical applications. Adv Sci. 2020;7(17):2000863.

    Article  CAS  Google Scholar 

  11. Finlayson L, Barnard IRM, McMillan L, Ibbotson SH, Brown CTA, Eadie E, Wood K. Depth penetration of light into skin as a function of wavelength from 200 to 1000 nm. Photochem Photobiol. 2021. https://doi.org/10.1111/php.13550.

  12. Tao Y, Chan HF, Shi BY, Li MQ, Leong KW. Light: A magical tool for controlled drug delivery. Adv Funct Mater. 2020;30(49):2005029.

    Article  CAS  Google Scholar 

  13. Ankri R, Lubart R, Taitelbaum H. Estimation of the optimal wavelengths for laser-induced wound healing. Laser Surg Med. 2010;42(8):760–4.

    Article  Google Scholar 

  14. Karisma VW, Wu W, Lei M, Liu H, Nisar MF, Lloyd MD, Pourzand C, Zhong JL. UVA-triggered drug release and photo-protection of skin. Front Cell Dev Biol. 2021;9: 598717.

    Article  Google Scholar 

  15. Rodrigues NDN, Staniforth M, Stavros VG. Photophysics of sunscreen molecules in the gas phase: a stepwise approach towards understanding and developing next-generation sunscreens. P Roy Soc-Math Phy. 2016;472(2195):20160677.

    Google Scholar 

  16. Stavros VG. Photochemistry: a bright future for sunscreens. Nat Chem. 2014;6(11):955.

    Article  CAS  Google Scholar 

  17. Xiong L, Zhao M, Fan Y, Wang S, Yang Y, Li X, Zhao D, Zhang F. Manganese oxide nanoclusters for skin photoprotection. ACS Appl Bio Mater. 2019;2:3974–82.

    Article  CAS  Google Scholar 

  18. Nery ÉM, Martinez RM, Velasco MVR, Baby AR. A short review of alternative ingredients and technologies of inorganic UV filters. J Cosmet Dermatol. 2021;20:1061–5.

    Article  Google Scholar 

  19. Surber C, Plautz J, Dähnhardt-Pfeiffer S, Osterwalder U. Size matters! Issues and challenges with nanoparticulate UV filters. Curr Probl Derm. 2021;55:203–22.

    Article  Google Scholar 

  20. Cole C, Shyr T, Ou-Yang H. Metal oxide sunscreens protect skin by absorption, not by reflecting or scattering. Photodermatol Photoimmunol Photomed. 2016;32:5–10.

    Article  CAS  Google Scholar 

  21. Schneider SL, Lim HW. A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed. 2019;35:442–6.

    Article  CAS  Google Scholar 

  22. Fajzulin I, Zhu X, Möller M. Nanoparticulate inorganic UV absorbers: a review. J Coat Technol Res. 2015;12(4):617–32.

    Article  CAS  Google Scholar 

  23. Dao DV, van den Bremt M, Koeller Z, Le TK. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens. Powder Technol. 2016;288:366–70.

    Article  CAS  Google Scholar 

  24. Nguyen NT, Nguyen TMN, Le NT, Le TK. Suppressing the photocatalytic activity of ZnO nanoparticles by Al-doping for the application in sunscreen products. Mater Technol. 2020;35(6):349–55.

    Article  CAS  Google Scholar 

  25. Yin H, Casey PS, McCall MJ. Surface modifications of ZnO nanoparticles and their cytotoxicity. J Nanosci Nanotechnol. 2010;10(11):7565–70.

    Article  CAS  Google Scholar 

  26. Barbosa JS, Neto DMA, Freire RM, Rocha JS, Fechine LMUD, Denardin JC, Valentini A, de Araújo TG, Mazzetto SE, Fechine PBA. Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation. Ultrasonics-Sonochemistry. 2018;48:340–8.

    Article  CAS  Google Scholar 

  27. Tyagi N, Srivastava SK, Arora S, Omar Y, Ijaz ZM, AL-Ghadhban A, Deshmukh SK, Carter JE, Singh AP, Singh S. Comparative analysis of the relative potential of silver, zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis. Cancer Lett. 2016;383 (1): 53–61.

  28. Parwaiz S, Khan MM, Pradhan D. CeO2-based nanocomposites: an advanced alternative to TiO2 and ZnO in sunscreens. Mater Express. 2019;9(3):185–202.

    Article  CAS  Google Scholar 

  29. Caputo F, Nicola MD, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, Traversa E, Ghibelli L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. 2015;7:15643.

    Article  CAS  Google Scholar 

  30. Fioramonti Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Marlus C. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):342.

    Article  Google Scholar 

  31. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24:259–68.

    Article  CAS  Google Scholar 

  32. de Melo WDMA, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence. 2021;12 (1): 2247–2272.

  33. Sun JY, Kormakov S, Liu Y, Huang Y, Wu DM, Yang ZG. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules. 2018;23(7):1704.

    Article  Google Scholar 

  34. Zhang J, Jiang C, Longo JPF, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharmaceutica Sinica B. 2018;8(2):137–46.

    Article  Google Scholar 

  35. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347–64.

    Article  CAS  Google Scholar 

  36. Zhou Z, Zhang L, Zhang Z, Liu Z. Advances in photosensitizer-related design for photodynamic therapy. Asian J Pharm Sci. 2021;16(6):668–86.

    Article  Google Scholar 

  37. Escudero A, Carrillo-Carrion C, Castillejos MC, Romero-Ben E, Rosales-Barrios C, Khiar N. Photodynamic therapy: photosensitizers and nanostructures. Mater Chem Front. 2021;5(10):3788–812.

    Article  CAS  Google Scholar 

  38. Zhang Y, Aslan K, Previte MR, Geddes CD. Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J Fluoresc. 2007;17:345–9.

    Article  CAS  Google Scholar 

  39. Farooq S, de Araujo RE. Identifying high performance gold nanoshells for singlet oxygen generation enhancement. Photodiagn Photodyn. 2021;35: 102466.

    Article  CAS  Google Scholar 

  40. Calavia PG, Bruce G, Perez-Garcia L, Russell DA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photoch Photobio Sci. 2018;17(11):1534–52.

    Article  Google Scholar 

  41. Haimov E, Weitman H, Polani S, Schori H, Zitoun D, Shefi O. meso-Tetrahydroxyphenylchlorin-conjugated gold nanoparticles as a tool to improve photodynamic therapy. ACS Appl Mater Inter. 2018;10(3):2319–27.

    Article  CAS  Google Scholar 

  42. Zhang Z, Chen Y, Ding J, Zhang C, Zhang A, He D, Zhang Y. Nanoparticle-loaded ethosomal vesicles for in vitro transdermal synergistic photodynamic/photothermal therapy of hypertrophic scars. Nanoscale Res Lett. 2017;12:622.

    Article  Google Scholar 

  43. Wang P, Tang H, Zhang P. Highly efficient and biocompatible nanoparticle-based photosensitizer for treatment of acne vulgaris. Nanomedicine. 2018;13(20):2629–36.

    Article  Google Scholar 

  44. Guan Q, Li YA, Li WY, Dong YB. Photodynamic therapy based on nanoscale metal–organic frameworks: from material design to cancer nanotherapeutics. Chem-Asian J. 2018;13(21):3122–49.

    Article  CAS  Google Scholar 

  45. Hynek J, Chahal MK, Payne DT, Labuta J, Hill JP. Porous framework materials for singlet oxygen generation. Coordin Chem Rev. 2020;425: 213541.

    Article  CAS  Google Scholar 

  46. Ding YJ, Chen YP, Zhang XL, Chen L, Dong ZH, Jiang HL, Xu HX. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J Am Chen Soc. 2017;139(27):9136–9.

    Article  CAS  Google Scholar 

  47. Han D, Han Y, Li J, Liu X, Yeung KWK, Zheng Y, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Yuan X, Feng X, Yang C, Wu S. Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl Catal B-Environ. 2020;261: 118248.

    Article  CAS  Google Scholar 

  48. Pasparakis G. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy. Small. 2013;9(24):4130–4.

    Article  CAS  Google Scholar 

  49. Yaraki MT, Pan YT, Hu F, Yu Y, Liu B, Tan YN. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater Chem Front. 2020;4(10):3074–85.

    Article  Google Scholar 

  50. Machuca A, Garcia-Calvo E, Anunciacao DS, Luque-Garcia JL. Rhodium nanoparticles as a novel photosensitizing agent in photodynamic therapy against cancer. Chem Eur J. 2020;26(34):7685–91.

    Article  CAS  Google Scholar 

  51. Chen JY, Yang L, Chen JC, Liu WZ, Zhang D, Xu P, Dai T, Shang L. Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing. Chem Eng J. 2019;374:1373–81.

    Article  CAS  Google Scholar 

  52. Kawasaki H, Kumar S, Li G, Zeng C, Kauffman DR, Yoshimoto J, Iwasaki Y, Jin R. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem Mater. 2014;26:2777–88.

    Article  CAS  Google Scholar 

  53. Bolanos K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomed. 2019;14:6387–406.

    Article  CAS  Google Scholar 

  54. Yang Y, Wang SX, Chen S, Shen YH, Zhu MZ. Switching the subcellular organelle targeting of atomically precise gold nanoclusters by modifying the capping ligand. Chem Commun. 2018;54(66):9222–5.

    Article  CAS  Google Scholar 

  55. Magalhães JA,Fernandes AU, Junqueira HC, Nunes BC, Cursino TAF, Formaggio DMD, Da S Baptist M, Tada DB. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer. Nanotechnology. 2020;31 (9): 095102.

  56. Zhou ZX, Liu JP, Rees TW, Wang H, Li XP, Chao H, Stang PJ. Heterometallic Ru–Pt metallacycle for two-photon photodynamic therapy. P Natl Acad Sci USA. 2018;115(22):5664–9.

    Article  CAS  Google Scholar 

  57. Zhou ZX, Liu JP, Huang J, Rees TW, Wang Y, Wang H, Li X, Chao H, Stang PJ. A self-assembled Ru–Pt metallacage as a lysosometargeting photosensitizer for 2-photon photodynamic therapy. P Natl Acad Sci USA. 2019;116(41):20296–302.

    Article  CAS  Google Scholar 

  58. Zhang H, Shan Y, Dong L. A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J Biomed Nanotechnol. 2014;10(8):1450–7.

    Article  CAS  Google Scholar 

  59. Zhou N, Zhu H, Li S, Yang J, Zhao T, Li Y, Xu QH. Au Nanorod/ZnO Core-shell nanoparticles as nano-photosensitizers for near-infrared light induced singlet oxygen generation. J Phys Chem C. 2018;122(14):7824–30.

    Article  CAS  Google Scholar 

  60. Cheng Y, Chang Y, Feng Y, Liu N, Sun X, Feng Y, Li X, Zhang H. Simulated sunlight-mediated photodynamic therapy for melanoma skin cancer by titanium-dioxide-nanoparticle–gold-nanocluster–graphene heterogeneous nanocomposites. Small. 2017;13(20):1603935.

    Article  Google Scholar 

  61. Hu Q, Huang Z, Duan Y, Fu Z, Liu B. Reprogramming tumor microenvironment with photothermal therapy. Bioconjugate Chem. 2020;31(5):1268–78.

    Article  Google Scholar 

  62. Xu S, Bai X, Wang L. Exploration of photothermal sensors based on photothermally responsive materials: a brief review. Inorg Chem Front. 2018;5(4):751–9.

    Article  CAS  Google Scholar 

  63. Ou H, Li J, Chen C, Gao H, Xue X, Ding D. Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci China Mater. 2019;62(11):1740–58.

    Article  CAS  Google Scholar 

  64. Liu SW, Wang L, Lin M, Liu Y, Zhang LN, Zhang H. Tumor photothermal therapy employing photothermal inorganic nanoparticles/polymers nanocomposites. Chinese J Polym Sci. 2019;37:115–28.

    Article  CAS  Google Scholar 

  65. Kim M, Lee JH, Nam JM. Plasmonic photothermal nanoparticles for biomedical applications. Adv Sci. 2019;6:1900471.

    Article  Google Scholar 

  66. Qiu JJ, Wei WD. Surface plasmon-mediated photothermal chemistry. J Phys Chem C. 2014;118(36):20735–49.

    Article  CAS  Google Scholar 

  67. Paul KK, Giri PK. Plasmonic metal and semiconductor nanoparticle decorated TiO2-based photocatalysts for solar light driven photocatalysis, In Encyclopedia of Interfacial Chemistry, Wandelt K eds, Elsevier, 2018;786–794.

  68. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2:107–18.

    Article  CAS  Google Scholar 

  69. Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. BBA-Rev Cancer. 2021;417: 128844.

    Google Scholar 

  70. Gharatape A, Davaran S, Salehi R, Hamishekar H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv. 2016;6:111482–516.

    Article  CAS  Google Scholar 

  71. Moustaoui H, Saber J, Djeddi I, Liu Q, Diallo AT, Spadavecchia J, de la Chapelle ML, Djaker N. Shape and size effect on photothermal heat elevation of gold nanoparticles: absorption coefficient experimental measurement of spherical and urchin-shaped gold nanoparticles. J Phys Chem C. 2019;123:17548–54.

    Article  CAS  Google Scholar 

  72. Yang L, Wang J, Sun L, Zhang Y, Huang P, Guo J. Comparison of gold nanospheres, nanorods, nanocages and nanoflowers for combined photothermal-radiotherapy of cancer. NANO: Brief Reports and Reviews. 2021;16 (4): 2150037.

  73. Adnan NNM, Cheng YY, Ong NMN, Kamaruddin TT, Rozlan E, Schmidt TW, Duong HTT, Boyer C. Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym Chem. 2016;7(16):2888–903.

    Article  CAS  Google Scholar 

  74. Pakravan A, Salehi R, Mahkam M. Comparison study on the effect of gold nanoparticles shape in the forms of star, hallow, cage, rods, and Si -Au and Fe -Au core-shell on photothermal cancer treatment. Photodiagn Photodyn. 2021;33: 102144.

    Article  CAS  Google Scholar 

  75. Luo D, Shi B, Wang J, Qian L, Qin Y. Particle diameter distribution and number concentration measurement of Au nanospheres solution and its photothermal temperature properties. Optik. 2019;194: 163039.

    Article  CAS  Google Scholar 

  76. Zhang J, Li J, Kawazoe N, Chen G. Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy. J Mater Chem B. 2017;5:245.

    Article  CAS  Google Scholar 

  77. Li J, Wang W, Zhao L, Rong L, Lan S, Sun H, Zhang H, Yang B. Hydroquinone-assisted synthesis of branched Au–Ag nanoparticles with polydopamine coating as highly efficient photothermal agents. ACS Appl Mater Interfaces. 2015;7(21):11613–23.

    Article  CAS  Google Scholar 

  78. Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015;38:10–21.

    Article  CAS  Google Scholar 

  79. Carrillo-Torres RC, García-Soto MJ, Morales-Chávez SD, Garibay-Escobar A, Hernández-Paredes J, Guzmán R, Barboza-Flores M, Álvarez-Ramos ME. Hollow Au–Ag bimetallic nanoparticles with high photothermal stability. RSC Advance. 2016;6(47):41304.

    Article  CAS  Google Scholar 

  80. Singh P, Jaiswal A. Investigating the performance of near-infrared light responsive monometallic gold and bimetallic gold-palladium nanorattles towards plasmonic photothermal therapy. ChemistrySelect. 2022;7(12): e202103877.

    Article  CAS  Google Scholar 

  81. Chen M, He Y, Zhu J. Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. Int J Heat Mass Tran. 2017;114:1098–104.

    Article  CAS  Google Scholar 

  82. Espinosa A, Curcio A, Cabana S, Radtke G, Bugnet M, Kolosnjaj-Tabi J, Péchoux C, Alvarez-Lorenzo C, Botton GA, Silva AKA, Abou-Hassan A, Wilhelm C. Intracellular biodegradation of Ag nanoparticles, storage in ferritin, and protection by a Au shell for enhanced photothermal therapy. ACS Nano. 2018;12(7):6523–35.

    Article  CAS  Google Scholar 

  83. Zhu J, Wang Y, Huo D, Ding Q, Lu Z, Hu Y. Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy. Mat Sci Eng C. 2019;105: 110023.

    Article  CAS  Google Scholar 

  84. Borah R, Verbruggen SW. Silver−gold bimetallic alloy versus core−shell nanoparticles: implications for plasmonic enhancement and photothermal applications. J Phys Chem C. 2020;124:12081–94.

    Article  CAS  Google Scholar 

  85. Ding X, Yuan P, Gao N, Zhu H, Yang YY, Xu QH. Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomed-Nanotechnol. 2017;13(1):297–305.

    Article  CAS  Google Scholar 

  86. Yang Y, Chen M, Wu Y, Wang P, Zhao Y, Zhu W, Song Z, Zhang XB. Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Adv. 2019;9:28541.

    Article  CAS  Google Scholar 

  87. Jia P, Ji H, Liu S, Zhang R, He F, Zhong L, Zhong L, Yang P. Integration of IR-808 and thiol-capped Au–Bi bimetallic nanoparticles for NIR light mediated photothermal/photodynamic therapy and imaging. J Mater Chem B. 2021;9:101–11.

    Article  CAS  Google Scholar 

  88. Chu C, Bao Z, Sun M, Wang X, Zhang H, Chen W, Sun Y, Li J, Zhuang Y, Wang D. NIR Stimulus-responsive PdPt bimetallic nanoparticles for drug delivery and chemo-photothermal therapy. Pharmaceutics. 2020;12(7):675.

    Article  CAS  Google Scholar 

  89. Yang Y, Lyu M, Li JH, Zhu DM, Yuan YF, Liu W. Ultra-small bimetallic iron–palladium (FePd) nanoparticle loaded macrophages for targeted tumor photothermal therapy in NIR-II biowindows and magnetic resonance imaging. RSC Adv. 2019;9:33378.

    Article  CAS  Google Scholar 

  90. Fang L, Wang WQ, Liu Y, Xie ZG, Chen L. Zeolitic imidazole framework coated Au nanorods for enhanced photothermal therapy and stability. Dalton T. 2017;46(28):8933–7.

    Article  CAS  Google Scholar 

  91. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab. 2017;18(2):120–8.

    Article  CAS  Google Scholar 

  92. Correa MG, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CP. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotech. 2020;11:1450–69.

    Article  CAS  Google Scholar 

  93. Ciriminna R, Albo Y, Pagliaro M. New antivirals and antibacterials based on silver nanoparticles. ChemMedChem. 2020;15(17):1619–23.

    Article  CAS  Google Scholar 

  94. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mat Sci Eng C. 2014;44:278–84.

    Article  CAS  Google Scholar 

  95. Besinis A, Peralta TD, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1–16.

    Article  CAS  Google Scholar 

  96. Prasanna VL, Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir. 2015;31(33):9155–62.

    Article  Google Scholar 

  97. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–8.

    Article  CAS  Google Scholar 

  98. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6(6):5164–73.

    Article  CAS  Google Scholar 

  99. Zhang W, Li Y, Niu J, Chen Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 2013;29(15):4647–51.

    Article  CAS  Google Scholar 

  100. Sivakumar P, Lee M, Kim YS, Shim MS. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J Mater Chem B. 2018;6:4852–71.

    Article  CAS  Google Scholar 

  101. Lipovsky A, Gedanken A, Nitzan Y, Lubar R. Enhanced inactivation of bacteria by metal-oxide nanoparticles combined with visible light irradiation. Laser Surg Med. 2011;43:236–40.

    Article  Google Scholar 

  102. Gupta R, Eswar NK, Modak JM, Madras G. Visible light driven efficient N and Cu co-doped ZnO for photoinactivation of Escherichia coli. RSC Adv. 2016;6:85675.

    Article  CAS  Google Scholar 

  103. Lubart A, Lipovski A, Gedanken A. The use of visible light and metal oxide nano particles for pathogen inactivation. AIP Conf Proc. 2012;1486:36.

    Article  CAS  Google Scholar 

  104. Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. High UV-Vis-NIR light-induced antibacterial activity by heterostructured TiO2-FeS2 nanocomposites. Int J Nanomed. 2020;15:8911–20.

    Article  CAS  Google Scholar 

  105. Zhang Y, Sun P, Zhang L, Wang Z, Wang F, Dong K, Liu Z, Ren J. Silver-infused porphyrinic metal–organic framework: surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv Funct Mater. 2019;29(11):1808594.

    Article  Google Scholar 

  106. Zhang L, Ouyang M, Zhang Y, Zhang L, Huang Z, He L, Lei Y, Zou Z, Feng F, Yang R. The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods. J Mater Chem B. 2021;9:8048.

    Article  CAS  Google Scholar 

  107. Qian S, Song L, Sun L, Zhang X, Xin Z, Yin J, Luan S. Metal-organic framework/poly (ε-caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities. J Photoch Photobio A. 2020;400: 112626.

    Article  CAS  Google Scholar 

  108. Zhang H, Xu Z, Mao Y, Zhang Y, Li Y, Lao J, Wang L. Integrating porphyrinic metal-organic frameworks in nanofibrous carrier for photodynamic antimicrobial application. Polymers. 2021;13(22):3942.

    Article  CAS  Google Scholar 

  109. Luo Y, Li J, Liu X, Tan L, Cui Z, Feng X, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, Yang C, Wang X, Wu S. Dual metal−organic framework heterointerface. ACS Cent Sci. 2019;5:1591–601.

    Article  CAS  Google Scholar 

  110. Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha OK, Ameer GA. Copper metal–organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano. 2018;12(2):1023–32.

    Article  CAS  Google Scholar 

  111. Han D, Han Y, Li J, Liu X, Yeung KWK, Zheng Y, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Yuan X, Feng X, Yang C, Wu S. Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl Catal B Environ. 2020;261: 118248.

    Article  CAS  Google Scholar 

  112. Urie R, Ghosh D, Ridha I, Rege K. Inorganic nanomaterials for soft tissue repair and regeneration. Annu Rev Biomed Eng. 2018;20:353–74.

    Article  CAS  Google Scholar 

  113. Xiao Y, Peng J, Liu Q, Chen L, Shi K, Han R, Yang Q, Zhong L. Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration. Theranostics. 2020;10(4):1500–13.

    Article  CAS  Google Scholar 

  114. Wang X, Lv F, Li T, Han Y, Yi Z, Liu M, Chang J, Wu C. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano. 2017;11:11337–49.

    Article  CAS  Google Scholar 

  115. Zhou WC, Zi L, Cen Y, You C, Tian M. Copper sulfide nanoparticles-incorporated hyaluronic acid injectable hydrogel with enhanced angiogenesis to promote wound healing. Front Bioeng Biotech. 2020;8:417.

    Article  Google Scholar 

  116. Lubart R. Metal-oxide nanoparticles increase the bactericidal effect of blue light. Photomed Laser Surg. 2012;30(3):115–7.

    Article  CAS  Google Scholar 

  117. Deng ZW, Li MH, Hu Y, He Y, Tao BL, Yuan Z, Wang R, Chen MW, Luo Z, Cai KY. Injectable biomimetic hydrogels encapsulating Gold/metal-organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem Eng J. 2021;420(1): 129668.

    Article  CAS  Google Scholar 

  118. Tian Q, Yang YC, Li AP, Chen Y, Li YX, Sun LM, Shang L, Gao LZ, Zhang LB. Ferrihydrite nanoparticles as the photosensitizer augment microbial infected wound healing with blue light. Nanoscale. 2021;13(45): 19123–19132.

  119. Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Nanomaterials as photothermal therapeutic agents. Prog Mater Sci. 2019;99:1–26.

    Article  Google Scholar 

  120. Amatya R, Hwang S, Park T, Chung YJ, Ryu S, Lee J, Cheong H, Moon C, Min KA, Shi MC. BSA/Silver nanoparticle-loaded hydrogel film for local photothermal treatment of skin cancer. Pharm Res. 2021;38:873–83.

    Article  CAS  Google Scholar 

  121. Fang L, Hu Q, Jiang K, Zhang X, Li B, Cui Y, Yang Y, Qian G. An inner light integrated metal-organic framework photodynamic therapy system for effective elimination of deep-seated tumor cells. J Solid State Chem. 2019;276:205–9.

    Article  CAS  Google Scholar 

  122. Yang YC, Tian Q, Wu SQ, Li YX, Yang K, Yan Y, Shang L, Li AP, Zhang LB. Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials. 2021;271: 120739.

    Article  CAS  Google Scholar 

  123. Liu P, Yang W, Shi L, Zhang H, Xu Y, Wang P, Zhang G, Chen WR, Zhang B, Wang X. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J Mater Chem B. 2019;7:6924–33.

    Article  CAS  Google Scholar 

  124. Pan SRDT, Goudoulas TB, Jeevanandam J, Tan KX, Chowdhury S, Danquah MK. Therapeutic applications of metal and metal-oxide nanoparticles: dermato-cosmetic perspectives. Front Bioeng Biotech. 2021;9. https://doi.org/10.3389/fbioe.2021.724499.

  125. Singh P, Nanda A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study. Int J Cosmetic Sci. 2014;36(3):273–83.

    Article  CAS  Google Scholar 

  126. Ben Haddada M, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S, Spadavecchia J, Morel AL. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloid Surface B. 2020;189: 110855.

    Article  CAS  Google Scholar 

  127. Elveny M, Khan A, Nakhjiri AT, Albadarin AB. A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. Arab J Chem. 2021;14(10): 103352.

    Article  CAS  Google Scholar 

  128. Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Curr Pathobiol Rep. 2021;9(4):133–44.

    Article  CAS  Google Scholar 

  129. Dasht BB, Bhattaccharjee SA, Somayaji MR, Banga AK. Topical and transdermal delivery with diseased human skin: passive and iontophoretic delivery of hydrocortisone into psoriatic and eczematous skin. Drug Deliv Transl Res. 2022;12:197–212.

    Article  Google Scholar 

  130. Medici S, Peana M, Pelucelli A, Zoroddu MA. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol. 2021;76:17–26.

    Article  CAS  Google Scholar 

  131. Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020;18(5):1659–83.

    Article  CAS  Google Scholar 

  132. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C, Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed-Nanotechnol. 2018;14 (1): 1–12.

  133. Wang ML, Lai X, Shao LQ, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomed. 2018;13(1):4445–59.

    Article  CAS  Google Scholar 

  134. Gao Y, Zhai H, She X, Si H. Quantitative structure-activity relationships studying the toxicity of metal nanoparticles. Curr Top Med Chem. 2020;20(27):2506–17.

    Article  CAS  Google Scholar 

  135. Fakhardo AF, Anastasova EI, Gabdullina SR, Solovyeva AS, Saparova VB, Chrishtop VV, Koshevaya ED, Krivoshapkina EF, Krivoshapkin PV, Kiselev GO, Kalikina PA, Koshel EI, Shtil AA, Vinogradov VV. Toxicity patterns of clinically relevant metal oxide nanoparticles. ACS Appl Bio Mater. 2019;2(10):4427–35.

    Article  CAS  Google Scholar 

  136. Tan KB, Sun D, Huang J, Odoom-Wubah T, Li Q. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. Chinese J Chem Eng. 2021;30:272–90.

    Article  CAS  Google Scholar 

  137. Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Paranhos A, Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm. 2021;597: 120311.

    Article  CAS  Google Scholar 

  138. Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res. 2022;12(7):1556–68.

    Article  CAS  Google Scholar 

  139. Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, Wen P. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res. 2021;1–25.

  140. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim D. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev. 2018;127:35–45.

    Article  CAS  Google Scholar 

  141. Chen Y, Chen N, Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int J Pharm. 2021;592: 120081.

    Article  CAS  Google Scholar 

  142. Alvia SB, Rajalakshmia PS, Jogdanda A, Sanjaya AY, Veeresh B, John R, Rengan AK. Iontophoresis mediated localized delivery of liposomal gold nanoparticles for photothermal and photodynamic therapy of acne. Biomater Sci. 2021;9:1421–30.

    Article  Google Scholar 

  143. Moothanchery M, Seeni RZ, Xu C, Pramanik M. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy. Biomed Opt Express. 2017;8(12):5438–92.

    Article  Google Scholar 

  144. Yang J, Hou M, Sun W, Wu Q, Xu J, Xiong L, Chai Y, Liu Y, Liu Y, Yu M, Wang H, Xu ZP, Liang X, Zhang C. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv Sci. 2020;7(16):2001088.

    Article  CAS  Google Scholar 

  145. Lin X, Cao Y, Xue Y, Wu F, Yu F, Wu M, Zhu X. Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRI - Guided photodynamic/photothermal combined treatment. Nanotechnology. 2020;31(13): 135101.

    Article  CAS  Google Scholar 

  146. Sozmen F, Kucukoflaz M, Ergul M, Inan ZDS. Nanoparticles with PDT and PTT synergistic properties working with dual NIR-light source simultaneously. RSC Adv. 2021;11(4):2383–9.

    Article  CAS  Google Scholar 

  147. Kim JY, Choi WI, Kim M, Tae G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J Control Release. 2013;171(2):113–21.

    Article  CAS  Google Scholar 

  148. Lv RC, Wang YX, Liu J, Liu J, Feng M, Yang F, Jiang X, Tian J. When a semiconductor utilized as an NIR laser-responsive photodynamic/photothermal theranostic agent integrates with upconversion nanoparticles. ACS Biomater-Sci Eng. 2019;5(6):3100–10.

    Article  CAS  Google Scholar 

  149. Feng M, Li M, Dai R, Xiao S, Tang J, Zhang X, Chen B, Liu J. Multifunctional FeS 2@SRF@BSA nanoplatform for chemo-combined photothermal enhanced photodynamic/chemodynamic combination therapy. Biomater Sci-UK. 2021;10(1):258–69.

    Article  Google Scholar 

  150. Duan M, Jiang L, Zeng G, Wang D, Tang W, Liang J, Wang H, He D, Liu Z, Tang L. Bimetallic nanoparticles/metal-organic frameworks: synthesis, applications and challenges. Appl Mater Today. 2020;19: 100564.

    Article  Google Scholar 

  151. Llop J, Estrela-Lopis I, Ziolo RF, Gonzalez A, Fleddermann J, Dorn M, Vallejo VG, Simon-Vazquez R, Donath E, Mao ZG. Uptake, biological fate, and toxicity of metal oxide nanoparticles. Part Part Syst Char. 2014;31(1):24–35.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81703435).

Author information

Authors and Affiliations

Authors

Contributions

Qiuyue Wang: Writing-original draft; Naiying Chen: Writing—review and editing; Mingming Li: Literature survey; Sicheng Yao: Literature survey; Xinxing Sun: Literature survey; Xun Feng: Conceptualization, Writing—review and editing; Yang Chen: Writing, Funding acquisition, Supervision, Project administration.

Corresponding authors

Correspondence to Xun Feng or Yang Chen.

Ethics declarations

Ethics approval and consent to participate

Not Applicable.

Consent for publication

All authors approve for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, N., Li, M. et al. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv. and Transl. Res. 13, 386–399 (2023). https://doi.org/10.1007/s13346-022-01216-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01216-4

Keywords

Navigation