Skip to main content
Log in

Sharp weak type estimates for a family of Córdoba bases

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \(\mathcal {B}\) be a collection of rectangular parallelepipeds in \(\mathbb {R}^3\) whose sides are parallel to the coordinate axes and such that \(\mathcal {B}\) consists of parallelepipeds with sidelengths of the form \(s, t, 2^N st\), where \(s, t > 0\) and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator \(M_\mathcal {B}\) satisfies the weak type estimate

$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \frac{|f|}{\alpha }\left( 1 + \log ^+ \frac{|f|}{\alpha }\right) \; \end{aligned}$$

but does not satisfy an estimate of the form

$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \phi \left( \frac{|f|}{\alpha }\right) \end{aligned}$$

for any convex increasing function \(\phi : [0, \infty ) \rightarrow [0, \infty )\) satisfying the condition

$$\begin{aligned} \lim _{x \rightarrow \infty }\frac{\phi (x)}{x (\log (1 + x))} = 0\;. \end{aligned}$$

Alternatively, if S is an infinite set, then the associated geometric maximal operator \(M_\mathcal {B}\) satisfies the weak type estimate

$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \frac{|f|}{\alpha } \left( 1 + \log ^+ \frac{|f|}{\alpha }\right) ^{2} \end{aligned}$$

but does not satisfy an estimate of the form

$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \phi \left( \frac{|f|}{\alpha }\right) \end{aligned}$$

for any convex increasing function \(\phi : [0, \infty ) \rightarrow [0, \infty )\) satisfying the condition

$$\begin{aligned} \lim _{x \rightarrow \infty }\frac{\phi (x)}{x (\log (1 + x))^2} = 0. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Córdoba, A.: Maximal functions, covering lemmas and Fourier multipliers. In: Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Part 1, vol. 35, pp. 29–50 (1979)

  2. Dmitrishin, D., Hagelstein, P., Stokolos, A.: Sharp weak type estimates for a family of Soria bases. J. Geom. Anal. 32, 169 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hagelstein, P., Stokolos, A.: Sharp weak type estimates for a family of Zygmund bases. Proc. Am. Math. Soc. 150, 2049–2057 (2022)

    MathSciNet  MATH  Google Scholar 

  4. Soria, F.: Examples and counterexamples to a conjecture in the theory of differentiation of integrals. Ann. Math. 123, 1–9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Stokolos, A.M.: On the differentiation of integrals of functions from \(L\phi (L)\). Stud. Math. 88, 103–120 (1988)

    Article  MATH  Google Scholar 

  6. Stokolos, A.M.: Zygmund’s program: some partial solutions. Ann. Inst. Fourier (Grenoble) 55, 1439–1453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Stokolos, A.M.: On weak type inequalities for rare maximal functions in \(\mathbb{R}^n\). Colloq. Math. 104, 311–315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zygmund, A.: A note on the differentiability of integrals. Colloq. Math. 16, 199–204 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hagelstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. H. is partially supported by a grant from the Simons Foundation (#521719 to Paul Hagelstein).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagelstein, P., Stokolos, A. Sharp weak type estimates for a family of Córdoba bases. Collect. Math. 74, 595–603 (2023). https://doi.org/10.1007/s13348-022-00366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-022-00366-5

Keywords

Mathematics Subject Classification

Navigation