Skip to main content
Log in

Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale)

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The chromosomal locations of a new class of Revolver transposon-like elements were analyzed by using FISH method on the metaphase chromosome in somatic cell division of the rye cultivar Petkus. First, the Revolver standard element probe λ2 was weakly hybridized throughout the rye chromosome, and comparatively large interstitial signals spotted with a dot shape were detected together with several telomeric regions. The dot shape interstitial signal was stably detected at one site on Chromosome (Chr) 1R (middle part of the interstitial region of the short arm), three sites on Chr 2R (distal part of the interstitial region and adjacent to the centromere on the short arm, middle part of the interstitial region of the long arm), and two sites on Chr 5R (middle part of the interstitial region and adjacent to the centromere on the long arm). The Revolver λ2 probe was effective for identification of 1R, 2R, and 5R chromosomes. On the other hand, Revolver nonautonomous element-specific L626-BARE-100 probe was strongly distributed throughout the rye chromosomes, and considerable numbers and diverse lengths of transcripts were detected by RT-PCR. Although the standard elements were found in localized clusters, the nonautonomous elements tended to be dispersed throughout the genome. Clustered nature of Revolver is a significantly rare case in genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altinkut A, Kotseruba V, Kirzhner VH, Nevo E et al (2006) Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res 14:307–317

    Article  CAS  PubMed  Google Scholar 

  • Assis R, Kondrashov AS (2009) Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution. Proc Natl Acad Sci USA 106:7079–7082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat A, Carels N, Bernardi G (1997) The distribution of genes in the genomes of Gramineae. Proc Natl Acad Sci USA 94:6857–6861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedbrook JR, Jones J, O’Dell M, Thompson RD et al (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (1996) The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204:195–229

    CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang X (2018) Relationships between gene structure and genome instability in flowering plants. 11:407–413

  • Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted- repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho J (2018) Transposon-derived non-coding RNAs and their function in plants. Front Plant Sci 9:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa FF (2008) Non-coding RNAs, epigenetics and complexity. Gene 410:9–17

    Article  CAS  PubMed  Google Scholar 

  • Devor EJ, Huang L, Wise A, Peek AS et al (2011) An X chromosome microRNA cluster in the marsupial species Monodelphis domestica. J Hered 102:577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002a) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Zhang X, Wessler SR (2002b) Miniature inverted-repeat transposable elements (MITEs) and their relationship with established DNA transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology Press, Washington, DC, pp 1147–1158

    Google Scholar 

  • Flavell RB, Rimpau JR, Smith DB (1977) Repeated sequence DNA relationships in four cereal genomes. Chromosoma 63:205–222

    Article  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR et al (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Grandbastien MA (1992) Retroelements in higher plants. Trends Genet 8:103–108

    Article  CAS  PubMed  Google Scholar 

  • Hickman AB, Dyda F (2015) Mechanisms of DNA transposition. Microbiol Spectr 3:MDNA3-0034-2014

    Article  PubMed  CAS  Google Scholar 

  • Huang CRL, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:51–675

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen M, Nevo E et al (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalendar R, Amenov A, Daniyarov A (2019) Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Funct Plant Biol 46:15–29

    Article  CAS  Google Scholar 

  • Kempken F, Windhofer F (2001) The hATfamily: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kunze R, Well CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology Press, Washington, DC, pp 565–610

    Google Scholar 

  • Lazarow K, Doll ML, Kunze R (2013) Molecular biology of maize Ac/Ds elements: an overview. Plant Transposable Elements: Methods and Protocols. Methods Mol Biol 1057:59–82

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Park JY, Kim JH, Kwon SJ et al (2006) Genetic mapping of the Isaac-CACTA transposon in maize. Theor Appl Genet 113:16–22

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2015) Mutator and MULE transposons. Microbiol Spectr 3:MDNA3-0032-2014

    Article  PubMed  CAS  Google Scholar 

  • Locke J, Howard LT, Aippersbach N, Podemski L et al (1999) The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster. Chromosoma 108:356–366

    Article  CAS  PubMed  Google Scholar 

  • Lonnig WE, Saedler H (2012) Chromosome rearrangements and transposable elements. Annu Rev Genet 36:389–410

    Article  CAS  Google Scholar 

  • Lu C, Chen J, Zhang Y et al (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 9:1005–1017

    Article  CAS  Google Scholar 

  • Lunde CF, Morrow DJ, Roy LM, Walbot V (2003) Progress in maize gene discovery: a project update. Funct Integr Genomics 3:25–32

    Article  CAS  PubMed  Google Scholar 

  • Michalak P (2006) RNA world - the dark matter of evolutionary genomics. J Evol Biol19:1768-1774

  • Muotri AR, Marchetto MCN, Coufal NG et al (2007) The necessary junk: new functions for transposable elements. Hum Mol Genet 16:R159–R167

    Article  CAS  PubMed  Google Scholar 

  • Myers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey. Theor Appl Genet 77:421–455

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, Berlin, p 364

    Google Scholar 

  • Oliver KR, McComb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5:1886–1901

    Article  PubMed  PubMed Central  Google Scholar 

  • Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Ronin YI, Fashima T, Roder MS et al (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39:243–252

    Article  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annu Bot 82:37–44

    Article  CAS  Google Scholar 

  • Siomi H, Siomi MC (2008) Interactions between transposable elements and Argonautes have (probably) been shaping the Drosophila genome throughout evolution. Curr Opin Genet Dev 18:181–187

    Article  CAS  PubMed  Google Scholar 

  • Song X, Cao X (2017) Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol 36:111–118

    Article  CAS  PubMed  Google Scholar 

  • Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res 15:21–31

    Article  CAS  PubMed  Google Scholar 

  • Sunker R, Girke T, Zhu JK (2005) Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res 33:4443–4454

    Article  CAS  Google Scholar 

  • Suoniemi A, Anamthawat-Jonsson K, Arna T, Schulman AH (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol 30:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Tomita M (2008) Revolver-2: a novel transposon-like element from rye. United States Patent 7, 351, 536B2

  • Tomita M, Shinohara K, Morimoto M (2008) Revolver is a new class of transposon-like gene composing the Triticeae genome. DNA Res 15:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita M, Akai K, Morimoto T (2009) Genomic subtraction recovers rye-specific DNA elements enriched in the rye genome. Mol Biotechnol 42:160–167

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Okutani A, Beiles A, Nevo E (2011) Genomic, RNA, and ecological divergences of the Revolver transposon-like multi-gene family in Triticeae. BMC Evol Biol 11 Article number:269

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanena J et al (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicient CM, Jaaskelainen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JF et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Narechania A, Sabot F, Stein J et al (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9:518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan WY, Tomita M, Sun SC, Yasumuro Y (1998) Identification of multi-alien genome carrying different powdery mildew resistant genes from rye and Haynaldia villosa into wheat genome. Genes Genet Syst 73:377–384

    Article  CAS  Google Scholar 

  • Zhang X, Jiang N, Feschotte C, Wessler SR (2004) PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chen JG, Zhao Q (2015) Regulatory roles of Alu transcript on gene expression. Exp Cell Res 338:113–118

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Grant-in-Aid for Scientific Research No. 1360006 and No. 04760006 of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to Motonori Tomita.

Author information

Authors and Affiliations

Authors

Contributions

MT conceived and designed the study; MT, TK, and ET conducted the experiments and analyzed the data; MT wrote the manuscript; all authors read and approved submission.

Corresponding author

Correspondence to Motonori Tomita.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomita, M., Kanzaki, T. & Tanaka, E. Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale). J Appl Genetics 62, 365–372 (2021). https://doi.org/10.1007/s13353-021-00617-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-021-00617-4

Keywords

Navigation