Skip to main content
Log in

Investigating Transport Properties of Low-Binder Ultrahigh-Performance Concretes: Binary and Ternary Blends of Nanosilica, Microsilica and Cement

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study examined low-binder ultrahigh-performance concrete (UHPC) when nanosilica (NS) and/or microsilica (MS) were incorporated in Portland cement (PC) in either binary or ternary blends. Two groups were created for this purpose, and they were divided based on the presence or absence of silica flume (SF). NS was used as a restricted substitute for cement by weight at five different percentages (0%, 0.5%, 1%, 2% and 3%). The total binder was 800 kg/m3, and the ratio of water to binder was 1:5. Results demonstrated that optimum resistance to chloride permeability, gas permeability, sorptivity, water absorption and water penetration came from the 3% UHPC sample. The ternary blends of NS, PC and SF yielded better results than binary PC and NS blends. A 1% NS replacement gave similar effects to the UHPC properties investigated as a 10% MS replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Richard, P.; Cheyrezy, M.: Composition of reactive powder concretes. Cem. Concr. Res. 25(7), 1501–1511 (1995)

    Article  Google Scholar 

  2. Wille, K.; Naaman, A.E.; Parra-Montesinos, G.J.: Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way. ACI Mater. J. 108(1), 34–46 (2011)

    Google Scholar 

  3. Schmidt, M.; Fehling, E.: Ultra-high-performance concrete: research, development and application in Europe. In: 7th International Symposium on the Utilization of High-Strength and High-Performance-Concrete, ACI Washington (2005)

  4. Vernet, C.P.: Ultra-durable concretes: structure at the micro-and nanoscale. MRS Bull. 29(5), 324–327 (2004)

    Article  Google Scholar 

  5. Gesoglu, M.; et al.: Properties of low binder ultra-high performance cementitious composites: comparison of nanosilica and microsilica. Constr. Build. Mater. 102, 706–713 (2016)

    Article  Google Scholar 

  6. Gesoglu, M.; et al.: Strain hardening ultra-high performance fiber reinforced cementitious composites: effect of fiber type and concentration. Compos. B Eng. 103, 74–83 (2016)

    Article  Google Scholar 

  7. Norhasri, M.M.; Hamidah, M.; Fadzil, A.M.: Inclusion of nano metaclayed as additive in ultra high performance concrete (UHPC). Constr. Build. Mater. 201, 590–598 (2019)

    Article  Google Scholar 

  8. Aggarwal, V.; Gupta, S.; Sachdeva, S.: High volume fly ash concrete: a green concrete. J. Environ. Res. Dev. 6(3A), 884–887 (2012)

    Google Scholar 

  9. Bendapudi, S.C.K.; Saha, P.: Contribution of fly ash to the properties of mortar and concrete. Int. J. Earth Sci. Eng. 4(06), 1017–1023 (2011)

    Google Scholar 

  10. Zou, X.; Wang, J.: Experimental study on joints and flexural behavior of FRP truss-UHPC hybrid bridge. Compos. Struct. 203, 414–424 (2018)

    Article  Google Scholar 

  11. Klee, H.: The cement sustainability initiative. Proc. Inst. Civ. Eng. Sustain. 157, 9–12 (2004)

    Google Scholar 

  12. Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E.: Cement and carbon emissions. Mater. Struct. 47(6), 1055–1065 (2014)

    Article  Google Scholar 

  13. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Ahmadi, M.; Wakil, K.; Trung, N.T.; Toghroli, A.: Prediction of concrete strength in presence of furnace slag and fly ash using hybrid ANN-GA (artificial neural network-genetic algorithm). Smart Struct. Syst. 25, 183–195 (2020)

    Google Scholar 

  14. Madani, H.; Bagheri, A.; Parhizkar, T.: The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem. Concr. Res. 42(12), 1563–1570 (2012)

    Article  Google Scholar 

  15. Berra, M.; et al.: Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr. Build. Mater. 35, 666–675 (2012)

    Article  Google Scholar 

  16. Hou, P.-K.; et al.: Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cem. Concr. Compos. 35(1), 12–22 (2013)

    Article  MathSciNet  Google Scholar 

  17. Schmidt, M.; et al.: Nanotechnological improvement of structural materials–impact on material performance and structural design. Cem. Concr. Compos. 36, 3–7 (2013)

    Article  Google Scholar 

  18. Lin, Y.; et al.: Effect of silica fumes on fluidity of UHPC: experiments, influence mechanism and evaluation methods. Constr. Build. Mater. 210, 451–460 (2019)

    Article  Google Scholar 

  19. Schröfl, C.; Gruber, M.; Plank, J.: Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cem. Concr. Res. 42(11), 1401–1408 (2012)

    Article  Google Scholar 

  20. Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 34(6), 1043–1049 (2004)

    Article  Google Scholar 

  21. Shaikh, F.U.; Supit, S.W.: Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)

    Article  Google Scholar 

  22. Supit, S.W.; Shaikh, F.U.; Sarker, P.K.: Effect of nano silica and ultrafine fly ash on compressive strength of high volume fly ash mortar. In: Applied Mechanics and Materials. Trans Tech Publ. (2013)

  23. Mosaberpanah, M.A.; Eren, O.; Tarassoly, A.R.: The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. J. Mater. Res. Technol. 8, 804–811 (2018)

    Article  Google Scholar 

  24. Deschner, F.; et al.: Hydration of Portland cement with high replacement by siliceous fly ash. Cem. Concr. Res. 42(10), 1389–1400 (2012)

    Article  Google Scholar 

  25. Thomas, J.J.; Jennings, H.M.; Chen, J.J.: Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 113(11), 4327–4334 (2009)

    Article  Google Scholar 

  26. Land, G.; Stephan, D.: The influence of nano-silica on the hydration of ordinary Portland cement. J. Mater. Sci. 47(2), 1011–1017 (2012)

    Article  Google Scholar 

  27. Korpa, A.; Kowald, T.; Trettin, R.: Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cem. Concr. Res. 38(7), 955–962 (2008)

    Article  Google Scholar 

  28. Qing, Y.; et al.: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21(3), 539–545 (2007)

    Article  Google Scholar 

  29. Jo, B.-W.; et al.: Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 21(6), 1351–1355 (2007)

    Article  Google Scholar 

  30. Krauss, H.; Budelmann, H.: Hydration kinetics of cement paste with very fine inert mineral additives. In: International RILEM Conference on Advances in Construction Materials Through Science and Engineering. RILEM Publications SARL (2011)

  31. Kumar, A.; Bishnoi, S.; Scrivener, K.L.: Modelling early age hydration kinetics of alite. Cem. Concr. Res. 42(7), 903–918 (2012)

    Article  Google Scholar 

  32. Oertel, T.; et al.: Primary particle size and agglomerate size effects of amorphous silica in ultra-high performance concrete. Cem. Concr. Compos. 37, 61–67 (2013)

    Article  Google Scholar 

  33. Lothenbach, B.; Scrivener, K.; Hooton, R.: Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256 (2011)

    Article  Google Scholar 

  34. Jalal, M.; et al.: Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 34, 389–400 (2012)

    Article  Google Scholar 

  35. Beigi, M.H.; et al.: An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 50, 1019–1029 (2013)

    Article  Google Scholar 

  36. Shih, J.-Y.; Chang, T.-P.; Hsiao, T.-C.: Effect of nanosilica on characterization of Portland cement composite. Mater. Sci. Eng., A 424(1–2), 266–274 (2006)

    Article  Google Scholar 

  37. He, X.; Shi, X.: Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transp. Res. Record: J. Transp. Res. Board 2070, 13–21 (2008)

    Article  Google Scholar 

  38. Du, H.; Du, S.; Liu, X.: Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Constr. Build. Mater. 82, 114–122 (2015)

    Article  Google Scholar 

  39. Hou, P.; et al.: Characteristics of surface-treatment of nano-SiO2 on the transport properties of hardened cement pastes with different water-to-cement ratios. Cem. Concr. Compos. 55, 26–33 (2015)

    Article  Google Scholar 

  40. Ghafari, E.; et al.: The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater. Des. 59, 1–9 (2014)

    Article  Google Scholar 

  41. Magudeaswaran, E.: Experimental investigation of mechanical properties on micro silica (silica fume) and fly ash as partial cement replacement of high performance concrete. IOSR J. Mech. Civ. Eng. 6(4), 57–63 (2013)

    Article  Google Scholar 

  42. Guleria, A.N.; Salhotra, S.: Effect of silica fume (micro silica or nano-silica) on mechanical properties of concrete: a review. Int. J. Civ. Eng. Technol. (IJCIET) 7(4), 345–357 (2016)

    Google Scholar 

  43. En, T.: 197-1 (Equivalence EN 197-1): Cement—Part 1: Compositions and Conformity Criteria for Common Cements, vol. 27. Turkish Standards Institution, Ankara (2002)

    Google Scholar 

  44. ASTMC494: Standard specification for chemical admixtures for concrete. In: Annual Book of American Society for Testing Materials Standards, vol. 4 (2010)

  45. Testing, A.S.F.; Concrete, M.C.C.-O.; Aggregates, C.: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. In: ASTM International (2012)

  46. TC116-PCD, R.: Permeability of concrete as a criterion of its durability: determination of the absorption of water of hardened concrete (1999)

  47. EN, B.: 12390-8. Depth of Penetration of Water Under Pressure. British Standards Institution (2000)

  48. ASTM, C.: 642, Standard test method for density, absorption, and voids in hardened concrete. In: Annual Book of ASTM Standards, vol. 4, p. 02 (2006)

  49. Güneyisi, E.; Gesoglu, M.; Özbay, E.: Permeation properties of self-consolidating concretes with mineral admixtures. ACI Mater. J. 108(2), 150 (2011)

    Google Scholar 

  50. McCarter, W.; Ezirim, H.; Emerson, M.: Absorption of water and chloride into concrete. Mag. Concr. Res. 44(158), 31–37 (1992)

    Article  Google Scholar 

  51. ASTM C1585-4: Standard test method for measurement of rate of absorption of water by hydraulic cement concretes, 100 barr harbor drive, PO Box C700 West Conshohocken (PA) (2004)

  52. Whiting, D.: Rapid determination of the chloride permeability of concrete. In: Final Report Portland Cement Association, Skokie, IL. Construction Technology Labs. (1981)

  53. Gesoğlu, M.; et al.: Permeation characteristics of self compacting concrete made with partially substitution of natural aggregates with rounded lightweight aggregates. Constr. Build. Mater. 59, 1–9 (2014)

    Article  Google Scholar 

  54. y Certificación, A.E.D.N.: Testing Hardened Concrete—Part. 8: Depth of Penetration of Water under Pressure. UNE-EN: 12390-8 (2009)

  55. Boel, V.; Audenaert, K.; De Schutter, G.: Gas permeability and capillary porosity of self-compacting concrete. Mater. Struct. 41, 1283–1290 (2008)

    Article  Google Scholar 

  56. Ahmad, S.; Adekunle, S.K.; Maslehuddin, M.; Azad, A.K.: Properties of self consolidating concrete made utilizing alternative mineral fillers. Constr. Build. Mater. 968, 268–276 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkader Ismail Al-Hadithi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.M., Al-Hadithi, A.I. & Asaad, D.S. Investigating Transport Properties of Low-Binder Ultrahigh-Performance Concretes: Binary and Ternary Blends of Nanosilica, Microsilica and Cement. Arab J Sci Eng 45, 8369–8378 (2020). https://doi.org/10.1007/s13369-020-04737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04737-7

Keywords

Navigation