Skip to main content
Log in

Microstructural and Mechanical Properties of One-Step Quenched and Partitioned 65Mn Steel

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The novel quenching and partitioning processes concerned with the stabilization of carbon enriched austenite and provision of higher strength with higher toughness. The microstructural and mechanical properties of one-step quenched and partitioned 65Mn steel were investigated under various partitioning times, ranging from 30 to 600 s. The optical microscopy revealed that microstructure transformed from ferrite and pearlite to supersaturated lath martensite and retained austenite phases after one-step quenching and 30 s of partitioning. The unstable epsilon carbides were nucleated with the increase in partitioning time to 60 s and 180 s, whereas a further increase in partitioning time to 300 s transformed these unstable epsilon carbides into a stable cementite phase. Prolonged partitioning for 600 s produced carbon depleted martensite phase and nucleated ferrite phase. A maximum improvement of 88% in hardness and tensile strength and maximum reduction of 64% in elongation and 44% in impact toughness were achieved after 30 s of partitioning, compared to the as-received steel sample. On the other hand, partitioning for 600 s offered almost identical mechanical properties to the as-received steel. Partitioning for 180 s offered an optimum combination of mechanical properties of one-step quenched and partitioned 65Mn steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forouzan, F.; Vuorinen, E.; Mücklich, F.: Post weld-treatment of laser welded AHSS by application of quenching and partitioning technique. Mater. Sci. Eng., A 698, 174–182 (2017)

    Google Scholar 

  2. Wang, M.M.; Hell, J.C.; Tasan, C.C.: Martensite size effects on damage in quenching and partitioning steels. Scr. Mater. 138, 1–5 (2017)

    Google Scholar 

  3. Allain, S.Y.P.; Geandier, G.; Hell, J.C.; Soler, M.; Danoix, F.; Gouné, M.: In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments. Scr. Mater. 131, 15–18 (2017)

    Google Scholar 

  4. Zou, D.Q.; Lia, S.H.; He, J.: Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels. Mater. Sci. Eng., A 680, 54–63 (2017)

    Google Scholar 

  5. Chena, X.; Niu, C.; Lian, C.; Lin, J.: The evaluation of formability of the 3rd generation advanced high strength steels QP980 based on digital image correlation method. Procedia Eng. 207, 556–561 (2017)

    Google Scholar 

  6. Mohammed, B.; Park, T.; Pourboghrat, F.; Hu, J.; Esmaeilpour, R.; Farha, F.A.: Multiscale crystal plasticity modeling of multiphase advanced high strength steel. Int. J. Solids Struct. 151, 57–75 (2018)

    Google Scholar 

  7. Mohammed, B.; Park, T.; Kim, H.; Pourboghrat, F.; Esmaeilpour, R.: The forming limit curve for multiphase advanced high strength steels based on crystal plasticity finite element modeling. Mater. Sci. Eng., A 725, 250–266 (2018)

    Google Scholar 

  8. Knijf, D.D.; Föjer, C.; Kestens, L.A.I.; Petrov, R.: Factors influencing the austenite stability during tensile testing of quenching and partitioning steel determined via in situ electron backscatter diffraction. Mater. Sci. Eng., A 638, 219–227 (2015)

    Google Scholar 

  9. Paykani, M.A.; Shahverdi, H.R.; Miresmaeili, R.: First and third generations of advanced high-strength steels in a FeCrNiBSi system. J. Mater. Process. Technol. 238, 383–394 (2016)

    Google Scholar 

  10. Liu, Qinglong; Zhou, Qingjun; Venezuela, Jeffrey; Zhang, M.; Atrens, A.: Hydrogen influence on some advanced high-strength steels. Corros. Sci. 125, 114–138 (2017)

    Google Scholar 

  11. Kalhor, A.; Soleimani, M.; Mirzadeh, H.; Uthaisangsuk, V.: A review of recent progress in mechanical and corrosion properties of dual phase steels. Arch. Civ. Mech. Eng. 20, 85 (2020)

    Google Scholar 

  12. Soleimani, M.; Kalhor, A.; Mirzadeh, H.: Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater. Sci. Eng., A 795, 140023 (2020)

    Google Scholar 

  13. Bhargava, M.; Tewari, A.; Mishra, S.K.: Forming limit diagram of advanced high strength steels (AHSS) based on strain-path diagram. Mater. Des. 85, 149–155 (2015)

    Google Scholar 

  14. Pourmajidian, M.; McDermid, J.R.: On the reactive wetting of a medium-Mn advanced high-strength steel during continuous galvanizing. Surf. Coat. Technol. 357, 418–426 (2019)

    Google Scholar 

  15. Park, T.; Hector, L.G.; Hu, J.X.; Farha, F.A.; Fellinger, M.R.; Kim, H.; Esmaeilpour, R.; Pourboghrat, F.: Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation. Int. J. Plast 120, 1–46 (2019)

    Google Scholar 

  16. Sun, W.W.; Wu, Y.X.; Yang, S.C.; Hutchinson, C.R.: Advanced high strength steel (AHSS) development through chemical patterning of austenite. Scr. Mater. 146, 60–63 (2018)

    Google Scholar 

  17. Srivastav, A.; Armaki, H.G.; Sung, H.; Chen, P.; Kumar, S.; Bower, A.F.: Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: experiments and modeling. J. Mech. Phys. Solids 78, 46–69 (2015)

    Google Scholar 

  18. Wang, Z.; Wang, K.; Liu, Y.; Zhu, B.; Zhang, Y.; Li, S.: Multi-scale simulation for hot stamping quenching and partitioning process of high-strength steel. J. Mater. Process. Technol. 269, 150–162 (2019)

    Google Scholar 

  19. Nyyssonen, T.; Peur, P.; Moor, E.D.; Williamsond, D.; Kuokkal, V.T.: Crystallography and mechanical properties of intercritically annealed quench and partitioned high-aluminum steel. Mater. Charact. 148, 71–80 (2019)

    Google Scholar 

  20. Casero, C.C.; Kwakernaak, C.; Sietsma, J.: The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel. Mater. Des. 178, 107847 (2019). https://doi.org/10.1016/j.matdes.2019.107847

    Article  Google Scholar 

  21. Kong, H.; Chao, Q.; Rolfe, B.; Beladi, H.: One-step quenching and partitioning treatment of a tailor welded blank of boron and TRIP steels for automotive applications. Mater. Des. 174, 107799 (2019)

    Google Scholar 

  22. Kong, H.; Chao, Q.; Cai, M.H.; Pavlina, E.J.; Rolfe, B.; Hodgson, P.D.; Beladi, H.: One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater. Sci. Eng., A 707, 538–547 (2017)

    Google Scholar 

  23. Ebner, S.; Suppan, C.; Stark, A.; Schnitzer, R.; Hofer, C.: Austenite decomposition and carbon partitioning during quenching and partitioning heat treatments studied via in situ X-ray diffraction. Mater. Des. 178, 107862 (2019)

    Google Scholar 

  24. Peng, F.; Xu, Y.; Li, J.: Interaction of martensite and bainite transformations and its dependence on quenching temperature in intercritical quenching and partitioning steels. Mater. Des. 181, 107921 (2019)

    Google Scholar 

  25. Xia, P.; Vercruysse, F.; Petrov, R.; Sabirov, I.; Rodríguez, M.C.; Verleysen, P.: High strain rate tensile behavior of a quenching and partitioning (Q&P) Fe–0.25C–1.5Si–3.0Mn steel. Mater. Sci. Eng., A 745, 53–62 (2019)

    Google Scholar 

  26. Wang, H.; Zhao, Y.; Yuan, X.; Chen, K.; Xu, R.: Effects of boronizing treatment on corrosion resistance of 65mn steel in two acid mediums. Phys. Procedia 50, 124–130 (2013)

    Google Scholar 

  27. Wang, Y.; Sun, J.; Jiang, T.; Yang, C.; Tan, Q.; Guo, S.; Liu, Y.: Super strength of 65Mn spring steel obtained by appropriate quenching and tempering in an ultrafine grain condition. Mater. Sci. Eng., A 754, 1–8 (2019)

    Google Scholar 

  28. Chunjie, D.; Jianhua, Z.; Jiayuan, X.; Xichao, S.; Yunfeng, Z.: Microstructures and properties of electrical discharge strengthened layers on 65Mn steel. Appl. Surf. Sci. 257, 2843–2849 (2011)

    Google Scholar 

  29. Liu, C.; Zhao, Z.; Northwood, D.O.; Liu, Y.: A new empirical formula for the calculation of MS in pure iron super low alloy steels. J. Mater. Process. Technol. 113, 556–562 (2001)

    Google Scholar 

  30. Wendler, M.; Ullrich, C.; Hauser, M.; Krüger, L.; Volkova, O.; Wei, A.; Mola, J.: Quenching and partitioning (Q and P) processing of fully austenitic stainless steels. Acta Mater. 133, 346–355 (2017)

    Google Scholar 

  31. Santofimia, M.J.; Petrov, R.H.; Zhao, L.; Sietsma, J.: Microstructural analysis of martensite constituents in quenching and partitioning steels. Mater. Charact. 92, 91–95 (2014)

    Google Scholar 

  32. Tariq, F.; Baloch, R.A.: One-step quenching and partitioning heat treatment of medium carbon low alloy steel. J. Mater. Eng. Perform. 23, 1726–1739 (2014)

    Google Scholar 

  33. Elena P.; David V. Edmonds, Phase transformation in steels. woodhead 138 (2012)

  34. Wang, C.Y.; Shi, J.; Cao, W.Q.; Dong, H.: Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel. Mater. Sci. Eng., A 527, 3442–3449 (2010)

    Google Scholar 

  35. Speer, J.G.: Phase transformation in quenched and partitioned steel. Phase Transf. Steel 2, 247–268 (2012)

    Google Scholar 

  36. Goerge E. Dieter, strengthening mechanisms in mechanical metallurgy book, 3rd edition 184–233 (2017)

  37. Callister, W.D.; David, J.; Rethwisch, G.: Dislocation and strengthening mechanisms in material science and engineering an introduction book, 8th edition 188–191 (2009)

  38. Hafeez, M.A.; Farooq, A.; Tayyab, K.B.; Arshad, M.A.: Effect of thermo-mechanical cyclic quenching and tempering treatments on microstructure, mechanical, and electrochemical properties of AISI 1345 steel. Int. J. Miner. Metall. Mater. (2020). https://doi.org/10.1007/s12613-020-2139-4

    Article  Google Scholar 

  39. Hafeez, M.A.; Usman, M.; Arshad, M.A.; Umer, M.A.: Nanoindentation-based micro-mechanical and electrochemical properties of quench-hardened, tempered low-carbon steel. Crystals 10, 508 (2020)

    Google Scholar 

  40. Hafeez, M.A.: Investigation on mechanical properties and immersion corrosion performance of 0.35%C–10.5%Mn steel processed by austenite reverted transformation (ART) annealing process. Metallogr. Microstruct. Anal. 9, 159–168 (2020)

    Google Scholar 

  41. Hafeez, M.A.; Farooq, A.: Effect of heat treatments on the mechanical and electrochemical behavior of 38CrSi and AISI 4140 steels. Metallogr. Microstruct. Anal. 8, 479–487 (2019)

    Google Scholar 

  42. Hafeez, M.A.; Farooq, A.: Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures. Mater. Res. Express 5, 016505 (2018)

    Google Scholar 

  43. Hafeez, M.A.: Effect of microstructural transformation during tempering on mechanical properties of quenched and tempered 38CrSi steel. Mater. Res. Express 6, 086552 (2019)

    Google Scholar 

  44. Abbaschian, R.; Abbaschian, L.; Reed-Hill, R.E.: Physical Metallurgy Principles, 4th edn, pp. 1–10. Cengage Learning, Stamford (2009)

    Google Scholar 

  45. Nishikawa, A.S.; Santofimia, M.J.; Sietsma, J.; Goldensein, H.: Influence of bainite reaction on the kinetics of carbon redistribution during the quenching and partitioning (Q & P) processing of medium Mn steel. Acta Mater. 107, 354–365 (2016)

    Google Scholar 

  46. Clarke, A.J.; Speer, J.G.; Matlock, D.K.; Rizzo, F.C.; Edmond, D.V.; Santofimin, M.J.: Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning. Scr. Mater. 61, 149–152 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arslan Hafeez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, M.A. Microstructural and Mechanical Properties of One-Step Quenched and Partitioned 65Mn Steel. Arab J Sci Eng 46, 2261–2267 (2021). https://doi.org/10.1007/s13369-020-05075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05075-4

Keywords

Navigation