Skip to main content

Advertisement

Log in

Integrated Wide-Area Backup Protection Algorithm During Stressed Power System Condition in Presence of Wind Farm

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Stressed power system conditions such as power swing, voltage instability and load encroachment may influence the secure operation of conventional backup protection at their third zone (zone 3). In this paper, a new integrated backup protection algorithm for distance relay is proposed based on wide-area measurements to distinguish the fault-stress conditions in the presence of offshore wind farm (WF). Presence of WF creates problem for distance relay due to varying wind speed and wide fluctuations in voltage and current signal during fault condition. In this work, two criteria are proposed to analyze and to identify the events. The first criterion compares the positive-sequence bus voltages in order to identify the faulty bus. According to second criterion, the absolute positive-sequence impedance angle difference between the lines connected to that faulty bus is computed to identify the faulty line. Numerous test cases with the WSCC 3-machine, 9-bus and IEEE 39 bus power system models have been simulated using EMTDC/PSCAD software. Results for different fault cases, power swing, load encroachment and voltage instability, and various non-fault cases like capacitor switching, demonstrate the efficacy of the wide-area backup protection scheme. Comparative assessment reports with the existing methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Andersson, G., et al.: Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

    MathSciNet  Google Scholar 

  2. NERC, August 14, 2003 Blackout: NERC Actions to Prevent and Mitigate the Impacts of Future Cascading Blackouts. North American Electric Reliability Council. Princeton, NJ, February 10 (2004)

  3. Rampurkar, V.; Pentayya, P.; Mangalvedekar, H.A.; Kazi, F.: Cascading failure analysis for Indian power grid. IEEE Trans. Smart Grid 7(4), 1951–1960 (2016)

    Google Scholar 

  4. Jena, M.K.; Samantaray, S.R.; Panigrahi, B.K.: A New adaptive dependability-security approach to enhance wide area back-up protection of transmission system. IEEE Trans. Smart Grid 9(6), 6378–6386 (2018)

    Google Scholar 

  5. Jose, T.; Biswal, M.; Venkatanagaraju, K.; Malik, O.P.: Integrated approach based third zone protection during stressed system conditions. Electr. Power Syst. Res. 161, 199–211 (2018)

    Google Scholar 

  6. Horowitz, S.H.; Phadke, A.G.: Third zone revisited. IEEE Trans. Power Deliv. 21(1), 23–29 (2006)

    Google Scholar 

  7. Ree, J.D.; Centeno, V.; Thorp, J.S.; Phadke, A.G.: Synchronized phasor measurement applications in power systems. IEEE Trans. Smart Grid 1(1), 20–27 (2010)

    Google Scholar 

  8. Nuqui, R.F.; Phadke, A.G.; Schulz, R.P.; Bhatt, N.: Fast on-line voltage security monitoring using synchronized phasor measurements and decision trees. In: IEEE Power Engineering Society Winter Meeting, vol 3. pp 1347–1352 (2001)

  9. Jonsson, M.; Daalder, J.E.: An adaptive scheme to prevent undesirable distance protection operation during voltage instability. IEEE Trans. Power Deliv. 18(4), 1174–1180 (2003)

    Google Scholar 

  10. Chen, M.; Wang, H.; Shen, S.; He, B.: Research on a distance relay-based wide-area backup protection algorithm for transmission lines. IEEE Trans Power Deliv. 32(1), 97–105 (2017)

    Google Scholar 

  11. Eissa, M.M.; Masoud, M.E.; Elanwar, M.M.M.A.: A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Trans. Power Deliv. 25(1), 270–278 (2010)

    Google Scholar 

  12. He, Z.; Zhang, Z.; Chen, W., et al.: Wide-area backup protection algorithm based on fault component voltage distribution. IEEE Trans. Power Deliv. 26(4), 2752–2760 (2011)

    Google Scholar 

  13. Yu, F.; Booth, C.; Dysko, A.; Hong, Q.: Wide-area backup protection and protection performance analysis scheme using PMU data. Int. J. Electr. Power Energy Syst. 110, 630–641 (2019)

    Google Scholar 

  14. Zhang, F.; Mu, L.; Guo, W.: An integrated wide-area protection scheme for active distribution networks based on fault components principle. IEEE Trans. Smart Grid 10(1), 392–402 (2019)

    Google Scholar 

  15. Li, Z.; Wan, Y.; Wu, L.; Cheng, Y.; Weng, H.: Study on wide-area protection algorithm based on composite impedance directional principle. Int. J. Electr. Power Energy Syst. 115, 105–118 (2020)

    Google Scholar 

  16. Azizi, S.; Sanaye-Pasand, M.: A straightforward method for wide-area fault location on transmission networks. IEEE Trans. Power Deliv. 30(1), 264–272 (2015)

    Google Scholar 

  17. Li, Z.; Yin, X.; Zhang, Z.; He, Z.: Wide-area protection fault identification algorithm based on multi-information fusion. IEEE Trans. Power Deliv. 28(3), 1348–1355 (2013)

    Google Scholar 

  18. Neyestanaki, M.K.; Ranjbar, A.M.: An adaptive PMU-based wide area backup protection scheme for power transmission lines. IEEE Trans. Smart Grid 6(3), 1550–1559 (2015)

    Google Scholar 

  19. Navalkar, P.V.; Soman, S.A.: Secure remote backup protection of transmission lines using synchrophasors. IEEE Trans. Power Deliv. 26(1), 87–96 (2011)

    Google Scholar 

  20. Ma, J.; Thorp, J.S.; Arana, A.J.; Yang, Q.; Phadke, A.G.: A fault steady state component-based wide area backup protection algorithm. IEEE Trans. Smart Grid 2(3), 468–475 (2011)

    Google Scholar 

  21. Giovanini, R.; Hopkinson, K.; Coury, D.V.; Thorp, J.S.: A primary and backup cooperative protection system based on wide area agents. IEEE Trans. Power Deliv. 21(3), 1222–1230 (2006)

    Google Scholar 

  22. Saber, A.; Emam, A.; Elghazaly, H.: Wide-area backup protection scheme for transmission lines considering cross-country and evolving faults. IEEE Syst. J. 13(1), 813–822 (2019)

    Google Scholar 

  23. Dubey, R.; Samantaray, S.R.; Panigrahi, B.K.: A spatiotemporal information system based wide-area protection fault identification scheme. Electr. Power Energy Syst. 89, 136–145 (2017)

    Google Scholar 

  24. Sharafi, A.; Majid, S.P.; Farrokh, A.: Transmission system wide area back-up protection using current phasor measurements. Electr. Power Energy Syst. 92, 93–103 (2017)

    Google Scholar 

  25. Kundu, P.; Pradhan, A.K.: Power network protection using wide-area measurements considering uncertainty in data availability. IEEE Syst. J. 12(4), 358–3368 (2018)

    Google Scholar 

  26. Nougain, V.; Jena, M.K.; Panigrahi, B.K.: Decentralised wide-area back-up protection scheme based on the concept of centre of reactive power. IET Gener. Transm. Distrib. 13(20), 4551–4557 (2019)

    Google Scholar 

  27. Nayak, P.K.; Pradhan, A.K.; Bajpai, P.: Wide-area measurement-based backup protection for power network with series compensation. IEEE Trans. Power Deliv. 29(4), 1970–1977 (2014)

    Google Scholar 

  28. Jena, M.K.; Samantaray, S.R.; Panigrahi, B.K.: A new wide-area backup protection scheme for series-compensated transmission system. IEEE Syst. J. 11(3), 1877–1887 (2017)

    Google Scholar 

  29. Das, S.; Dubey, R.; Panigrahi, B.K.; Samantaray, S.R.: Secured zone-3 protection during power swing and voltage instability: an online approach. IET Gener. Transm. Distrib. 11(2), 437–446 (2017)

    Google Scholar 

  30. Mohammadreza, A.; Sadeh, J.: A modified wide-area backup protection scheme for shunt-compensated transmission lines. Electr. Power Syst. Res. 183, 106274 (2020)

    Google Scholar 

  31. Kumar, J.; Jena, P.: Wide-area measurement-based adaptive backup protection for shunt compensation environment. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-020-04762-6 (2020)

    Article  Google Scholar 

  32. Ma, J.; Zhang, W.; Liu, J., et al.: A novel adaptive distance protection scheme for DFIG wind farm collector lines. Int. J. Electr. Power Energy Syst. 94, 234–244 (2018)

    Google Scholar 

  33. Chen, Y.; Wen, M.; Yin, X.; Cai, Y.; Zheng, J.: Distance protection for transmission lines of DFIG-based wind power integration system. Int. J. Electr. Power Energy Syst. 100, 438–448 (2018)

    Google Scholar 

  34. Li, Y.; Mohammed, S.Q.; Nariman, G.S.; Aljojo, N.; Rezvani, A.; Dadfar, S.: Energy management of microgrid considering renewable energy sources and electric vehicles using the backtracking search optimization algorithm. J. Energy Resour. Technol. https://doi.org/10.1115/1.4046098 (2020)

    Article  Google Scholar 

  35. Wu, D.; Nariman, G.S.; Mohammed, S.Q.; Shao, Z.; Rezvani, A.; Mohajeryami, S.: Modeling and simulation of novel dynamic control strategy for PV-wind hybrid power system using FGS−PID and RBFNSM methods. Soft Comput. 24, 1–23 (2019)

    Google Scholar 

  36. Chen, W.; Shao, Z.; Wakil, K.; Aljojo, N.; Samad, S.; Rezvani, A.: An efficient day-ahead cost-based generation scheduling of a multi-supply microgrid using a modified krill herd algorithm. J. Clean. Prod. 272, 122364 (2020)

    Google Scholar 

  37. Luo, L.; Abdulkareem, S.S.; Rezvani, A.; Miveh, M.R.; Samad, S.; Aljojo, N.; Pazhoohesh, M.: Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty. J. Energy Storage 28, 101306 (2020)

    Google Scholar 

  38. Ge, X.; Ahmed, F.W.; Rezvani, A.; Aljojo, N.; Samad, S.; Foong, L.K.: Implementation of a novel hybrid BAT-fuzzy controller based MPPT for grid-connected PV-battery system. Control Eng. Pract. 98, 104380 (2020)

    Google Scholar 

  39. Erlich, I.; Winter, W.; Dittrich, A.: Advanced grid requirements for the integration of wind turbines into the German transmission system. In: IEEE PES General Meeting. 7-pp (2006).

  40. Hooshyar, A.; Azzouz, M.A.; El-Saadany, E.F.: Distance protection of lines connected to induction generator-based wind farms during balanced faults. IEEE Trans. Sustain. Energy 25(4), 1193–1203 (2014)

    Google Scholar 

  41. Dubey, R.; Samantaray, S.R.; Panigrahi, B.K.: Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm. IET Gener. Transm. Distrib. 10(1), 247–256 (2016)

    Google Scholar 

  42. Paladhi, S.; Pradhan, A.K.: Resilient protection scheme preserving system integrity during stressed condition. IET Gener. Transm. Distrib. 13(14), 3188–3194 (2019)

    Google Scholar 

  43. Liu, N.; Crossley, P.: Assessing the risk of implementing system integrity protection schemes in a power system with significant wind integration. IEEE Trans. Power Deliv. 33(2), 810–820 (2018)

    Google Scholar 

  44. Eissa, M.M.: Challenges and novel solution for wide-area protection due to renewable sources integration into smart grid: an extensive review. IET Renew. Power Gener. 12(16), 1843–1853 (2018)

    Google Scholar 

  45. Eissa, M.M.: Developing three-dimensional-phase surface-based wide area protection centre in a smart grid with renewable resources. IET Energy Syst. Integr. 1(2), 65–73 (2019)

    Google Scholar 

  46. Heyde, C., Lerch, E., Kerin, U., Krebs, R., Mau, C. N.: Wide-area protection based on PMU measurement. In: Proceedings of the CIGRE Regional South-East European Conference (2016).

  47. Technical Application Papers: Wind Power Plants. No 13 ed. ABB SACE e ABB S.p.A.L.V. (2011).

  48. Gielen, D.: Renewable energy technologies: cost analysis series, concentrating solar power. Int. Renew. Energy Agency 4(2/8), 1–48 (2012)

    Google Scholar 

  49. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500–38060. Golden, CO: National Renewable Energy Laboratory (2007)

  50. Goharrizi, A.Y., Muthumuni, D., Pipelzadeh, Y.: Modeling of type-3 wind farm and investigation of fault contribution in power system. IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 1–5 (2016).

  51. Rijcke, S., De Pérez P. S., Driesen, J.: Impact of wind turbines equipped with doubly-fed induction generators on distance relaying. In: IEEE PES General Meeting, Minneapolis, MN (2010)

  52. Ghosh, S.; Kamalasadan, S.; Senroy, N.; Enslin, J.: Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application. IEEE Trans. Power Syst. 31(3), 1861–1871 (2016)

    Google Scholar 

  53. Kansal, P.; Bose, A.: Bandwidth and latency requirements for smart transmission grid applications. IEEE Trans. Smart Grid 3(3), 1344–1352 (2012)

    Google Scholar 

  54. Barsch, J., et al.: Fault current contributions from wind plants. A report to the T&D Committee, Electric Machinery Committee and Power System Relaying Committee of the IEEE PES 2012.

  55. Jarrahi, M.A.; Samet, H.; Ghanbari, T.: Fast current-only based fault detection method in transmission line. IEEE Syst. J. 13(2), 1725–1736 (2019)

    Google Scholar 

  56. Line differential protection manual. SIPROTEC 47S-D61.

Download references

Acknowledgements

The authors would also like to acknowledge the Department of Electrical Engineering, O. P. Jindal University, Raigarh, for providing the facilities to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Biswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, S., Swain, S.D., Patidar, R.D. et al. Integrated Wide-Area Backup Protection Algorithm During Stressed Power System Condition in Presence of Wind Farm. Arab J Sci Eng 46, 9363–9376 (2021). https://doi.org/10.1007/s13369-020-05290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05290-z

Keywords

Navigation