Skip to main content

Advertisement

Log in

Flow Behaviour and Aerodynamic Loading on a Stand-Alone Heliostat: Wind Incidence Effect

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heliostats represent a significant proportion of the cost of central tower concentrating solar power systems; hence, there is a need to reduce the cost of these. One of the challenges faced in doing this is to ensure that any new design is still able to cope with the loads imposed upon it, particularly the aerodynamic loads. Numerous studies have reported the aerodynamic loadings encountered by heliostats for multiple operational conditions. However, these studies only extracted and reported these values without relating their findings of the variation in wind loads with heliostat orientation to the airflow characteristics around the structure. Besides, there is a marked absence of studies that rigorously explore in any detail the wind incidence effect and the impact that has on the aerodynamic behaviour of a heliostat. In this study, computational fluid dynamics was utilized to investigate the effect of wind incidence angles on a heliostat operating at varying tilt angles, to better characterize the aerodynamic loading of these structures and to relate these loads to the wind flow field around the heliostat. The results, validated against wind tunnel test data, showed that the tilt and wind incidence angle had a significant influence on the aerodynamic coefficients that varied strongly across the multiple operational conditions investigated. Moreover, the airflow field around the heliostat structure showed markedly different behaviour characteristics with the change in wind incidence angle. Considering a full range of tilt angles between 90° and − 90°, and incidence angles ranging from 0° to 90° with an angular resolution of 11.25°, the work delivers a fuller characterization of the lift, drag, base overturning moment and hinge moment coefficients than previously available. In achieving this, it delivers a generalized correlation for each of the coefficients based on the heliostat’s orientation with respect to the wind. When paired with existing gust loading relationships, these formulations provide a useful analytical tool to assess structural loads on a heliostat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yahiaoui, A.; Benmansour, K.; Tadjine, M.: Control, analysis and optimization of hybrid PV–Diesel–Battery systems for isolated rural city in Algeria. Sol. Energy 137, 1–10 (2016)

    Article  Google Scholar 

  2. Uzair, M.: Wind induced heat losses from solar dish-receiver systems. Doctoral dissertation, Auckland University of Technology, Auckland, New Zealand (2018)

  3. Goswami, D.Y.: Principles of Solar Engineering, 3rd edn. CRC Press, New York, USA (2015)

    Book  Google Scholar 

  4. Behar, O.; Khellaf, A.; Mohammedi, K.: A review of studies on central receiver solar thermal power plants. Renew. Sustain. Energy Rev. 23, 12–39 (2013)

    Article  Google Scholar 

  5. Mancini, T.R.: Catalog of Solar Heliostats. SolarPACES Report No. III-1/00 (2000)

  6. Kolb, G.; Jones, S.; Donnelly, M.; Gorman, D.; Thomas, R.; Davenport, R.; Lumia, R.: Heliostat Cost Reduction Study. Sandia National Laboratories, Albuquerque, New Mexico, Report number SAND2007-3293 (2007)

  7. Peterka, J.A.; Derickson, R.G.: Wind Load Design Methods for Ground-Based Heliostats and Parabolic Dish Collectors. Report number SAND92-7009. Sandia National Laboratories, Albuquerque, NM (United States) (1992)

  8. Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.: Wind Load Reduction for Heliostats. Report SERI/STR-253-2859. Solar Energy Research Institute, Golden, Colorado, USA (1986)

  9. Wu, Z.; Gong, B.; Wang, Z.; Li, Z.; Zang, C.: An experimental and numerical study of the gap effect on wind load on heliostat. Renew. Energy 35(4), 797–806 (2010)

    Article  Google Scholar 

  10. Pfahl, A.; Buselmeier, M.; Zaschke, M.: Wind loads on heliostats and photovoltaic trackers of various aspect ratios. Sol. Energy 85(9), 2185–2201 (2011)

    Article  Google Scholar 

  11. Emes, M.J.; Arjomandi, M.; Ghanadi, F.; Kelso, R.M.: Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position. Sol. Energy 157, 284–297 (2017)

    Article  Google Scholar 

  12. Mammar, M.; Djouimaa, S.; Gärtner, U.; Hamidat, A.: Wind loads on heliostats of various column heights: an experimental study. Energy 143, 867–880 (2018)

    Article  Google Scholar 

  13. Marais, M.D.; Craig, K.J.; Meyer, J.P.: Computational flow optimization of heliostat aspect ratio for wind direction and elevation angle. Energy Proc. 69, 148–157 (2015)

    Article  Google Scholar 

  14. Mammar, M.; Djouimaa, S.; Hamidat, A.; Bahria, S.; El Ganaoui, M.: Wind effect on full-scale design of heliostat with torque tube. Mech. Ind. 18(3), 312 (2017)

    Article  Google Scholar 

  15. Ghanadi, F.; Yu, J.; Emes, M.; Arjomandi, M.; Kelso, R.: Numerical investigation of wind loads on an operating heliostat. AIP Conf. Proc. 1850(1), 130003 (2017)

    Article  Google Scholar 

  16. Ghanadi, F.; Emes, M.; Yu, J.; Arjomandi, M.; Kelso, R.: Investigation of the atmospheric boundary layer characteristics on gust factor for the calculation of wind load. AIP Conf. Proc. 1850(1), 130002 (2017)

    Article  Google Scholar 

  17. Diver, R.B.; Grossman, J.W.: Sandwich Construction Solar Structural Facets. Sandia National Laboratories, Albuquerque, New Mexico, Report Number SAND98-2845C (1998)

  18. Aldaz, L.; Burisch, M.; Zaversky, F.; Sánchez, M.; Villasante, C.; Olasolo, D.: Heliostat structural optimization: a study of wind load effects with CFD-FEM methods. AIP Conf. Proc. 2033(1), 210001 (2018)

    Article  Google Scholar 

  19. Liedke, P.; Pfahl, A.; Vásquez-Arango, J.F.; Hölle, E.: 3rd generation rim drive heliostat with monolithic sandwich panel. AIP Conf. Proc. 2033(1), 040021 (2018)

    Article  Google Scholar 

  20. Bendjebbas, H.; Abdellah-ElHadj, A.; Abbas, M.: Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: a review. Renew. Sustain. Energy Rev. 54, 452–472 (2016)

    Article  Google Scholar 

  21. Pfahl, A.; Uhlemann, H.: Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 99(9), 964–968 (2011)

    Article  Google Scholar 

  22. Jubayer, C.M.; Hangan, H.: Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system. J. Wind Eng. Ind. Aerodyn. 134, 56–64 (2014)

    Article  Google Scholar 

  23. Rafiee, R.; Tahani, M.; Moradi, M.: Simulation of aeroelastic behavior in a composite wind turbine blade. J. Wind Eng. Ind. Aerodyn. 151, 60–69 (2016)

    Article  Google Scholar 

  24. Uzair, M.; Anderson, T.N.; Nates, R.J.: The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver. Sol. Energy 151, 95–101 (2017)

    Article  Google Scholar 

  25. ANSYS Inc.: FLUENT User’s Guide. ANSYS, Canonsburg (2015)

    Google Scholar 

  26. Hutchins, N.; Chauhan, K.; Marusic, I.; Monty, J.; Klewicki, J.: Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound. Layer Meteorol. 145(2), 273–306 (2012)

    Article  Google Scholar 

  27. Simiu, E.; Scanlan, R.H.: Wind Effects on Structures: Fundamentals and Applications to Design, 3rd edn. Wiley, New York (1996)

    Google Scholar 

  28. Cermak, J.E.; Peterka, J.A.; Kareem, A.: Heliostat Field-Array Wind-Tunnel Test. Report Number CER78-79JEC-JAPAK2. McDonnell Douglas Astronautics Company, California, USA (1978)

  29. Google: RE<C: Heliostat Wind Tunnel Experiments. http://www.google.org/pdfs/google_heliostat_wind_tunnel.pdf (2011)

  30. Sun, H.; Gong, B.; Yao, Q.: A review of wind loads on heliostats and trough collectors. Renew. Sustain. Energy Rev. 32, 206–221 (2014)

    Article  Google Scholar 

  31. Jafari, A.; Ghanadi, F.; Emes, M.J.; Arjomandi, M.; Cazzolato, B.S.: Measurement of unsteady wind loads in a wind tunnel: scaling of turbulence spectra. J. Wind Eng. Ind. Aerodyn. 193, 103955 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulaiman O. Fadlallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadlallah, S.O., Anderson, T.N. & Nates, R.J. Flow Behaviour and Aerodynamic Loading on a Stand-Alone Heliostat: Wind Incidence Effect. Arab J Sci Eng 46, 7303–7321 (2021). https://doi.org/10.1007/s13369-021-05405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05405-0

Keywords

Navigation