Skip to main content
Log in

Parylene C-AlN Multilayered Thin-Film Passivation for Organic Light-Emitting Diode Using a Single Deposition Chamber

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Poly-para-xylylene C (Parylene C) and Aluminium Nitride (AlN) multilayered thin films using a single chamber are proposed to achieve transparent passivation for organic light-emitting diodes (OLED). Parylene C-AlN multilayered thin films were obtained through a sequential deposition of Parylene C layers by an optimized chemical vapor deposition as well as deposition of AlN layers by radio frequency reactive sputtering within a short process time at room temperature. An OLED passivated with the thin film showed a significant extension of shelf-life of 400 h at 25 °C and 30% RH without any formation of dark spots during the shelf-life analysis, while a reference OLED without any passivation film was degraded within 24 h. In addition, the multilayered passivation films exhibited considerable optical transparency with transmittance greater than 85% in the visible range. This result demonstrates that Parylene C-AlN multilayered films can be successfully deposited within a short time at room temperature in a single chamber for passivation applications in transparent flexible OLEDs and other organic electronic devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this published article (and its supplementary information).

References

  1. Thejo Kalyani, N., Dhoble, S.J.: Organic light emitting diodes: energy saving lighting technology—a review. Renewable Sustain. Energy Rev. 16, 2696–2723 (2012). https://doi.org/10.1016/j.rser.2012.02.021

    Article  CAS  Google Scholar 

  2. Han, T.-H., Lee, Y., Choi, M.-R., Woo, S.-H., Bae, S.-H., Hong, B.H., Ahn, J.-H., Lee, T.-W.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012). https://doi.org/10.1038/nphoton.2011.318

    Article  CAS  Google Scholar 

  3. Sasabe, H., Kido, J.: Development of high performance OLEDs for general lighting. J. Mater. Chem. C 1, 1699–1707 (2013). https://doi.org/10.1039/C2TC00584K

    Article  CAS  Google Scholar 

  4. Ye, H., Wu, H., Chen, L., Ma, S., Zhou, K., Yan, G., Shen, J., Chen, D., Su, S.-J.: Synthesis, properties, calculations and applications of small molecular host materials containing oxadiazole units with different nitrogen and oxygen atom orientations for solution-processable blue phosphorescent OLEDs. Electron. Mater. Lett. 14, 89–100 (2018). https://doi.org/10.1007/s13391-018-0011-8

    Article  CAS  Google Scholar 

  5. Schaer, M., Nuesch, F., Berner, D., Leo, W., Zuppiroli, L.: Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 11, 116–121 (2001). https://doi.org/10.1002/1616-3028(200104)11:2%3c116:AID-ADFM116%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  6. Aziz, H., Popovic, Z., Xie, S., Hor, A.-M., Hu, N.-X., Tripp, C., Xu, G.: Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices. Appl. Phys. Lett. 72, 756–758 (1998). https://doi.org/10.1063/1.120867

    Article  CAS  Google Scholar 

  7. Park, S., Yun, W.M., Kim, L.H., Park, S., Kim, S.H., Park, C.E.: Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes. Org. Electron. 14, 3385–3391 (2013). https://doi.org/10.1016/j.orgel.2013.09.045

    Article  CAS  Google Scholar 

  8. Burrows, P.E., Bulovic, V., Forrest, S.R., Sapochak, L.S., McCarty, D.M., Thompson, M.E.: Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 65, 2922–2924 (1994). https://doi.org/10.1063/1.112532

    Article  CAS  Google Scholar 

  9. Park, J.-S., Chae, H., Chung, H.K., Lee, S.I.: Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011). https://doi.org/10.1088/0268-1242/26/3/034001

    Article  CAS  Google Scholar 

  10. Chatham, H.: Review—Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf. Coat. Technol. 78, 1–9 (1996). https://doi.org/10.1016/0257-8972(95)02420-4

    Article  CAS  Google Scholar 

  11. Yi, S.-M., Choi, I.-S., Kim, B.-J., Joo, Y.-C.: Reliability issues and solutions in flexible electronics under mechanical fatigue. Electron. Mater. Lett. 14, 387–404 (2018). https://doi.org/10.1007/s13391-018-0043-0

    Article  CAS  Google Scholar 

  12. Dameron, A., Davidson, S., Burton, B., Carcia, P., McLean, R., George, S.: Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 112, 4573–4580 (2008). https://doi.org/10.1021/jp076866+

    Article  CAS  Google Scholar 

  13. Kim, L.H., Jeong, Y.J., An, T.K., Park, S., Jang, J.H., Nam, S., Jang, J., Kim, S.H., Park, C.E.: Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition. Phys. Chem. Chem. Phys. 18, 1042–1049 (2016). https://doi.org/10.1039/c5cp06713h

    Article  CAS  Google Scholar 

  14. Lee, U.S., Choi, J.S., Yang, B.S., Oh, S., Kim, Y.J., Oh, M.S., Heo, J., Kim, H.J.: Formation of a bilayer of ALD-SiO2 and sputtered Al2O3/ZrO2 films on polyethylene terephthalate substrates as a moisture barrier. ECS Solid State Lett. 2, R13–R15 (2013). https://doi.org/10.1149/2.004306ssl

    Article  CAS  Google Scholar 

  15. Kim, E.H., Cho, A.R., Lee, Y.-S., Jang, J., Park, L.S.: Fabrication of multiple gas barrier layers utilizing roll-to-roll sputter and performance. Mol. Cryst. Liq. Cryst. 602, 34–45 (2014). https://doi.org/10.1080/15421406.2014.944372

    Article  CAS  Google Scholar 

  16. Park, E.K., Kim, S.M., Heo, J., Kim, H.J.: Electrical evaluation of crack generation in SiNx and SiOxNy thin-film encapsulation layers for OLED displays. Appl. Surf. Sci. 370, 126–130 (2016). https://doi.org/10.1016/j.apsusc.2016.02.142

    Article  CAS  Google Scholar 

  17. Araiza, J.J., Aguilar-Frutis, M., Falcony, C., Jergel, M.: Optical, structural and electrical characteristics of aluminum oxynitride thin films deposited in an Ar-N gas mixture RF-sputtering system. Mater. Electron. 16, 657–661 (2005). https://doi.org/10.1007/s10854-005-3741-y

    Article  CAS  Google Scholar 

  18. Jamieson, E.H.H., Windle, A.H.: Structure and oxygen-barrier properties of metallized polymer film. J. Mater. Sci. 18, 64–80 (1983). https://doi.org/10.1007/bf00543811

    Article  CAS  Google Scholar 

  19. Meng, E., Li, P.-Y., Tai, Y.-C.: Plasma removal of Parylene C. J. Micromech. Microeng. 18, 045004 (2008). https://doi.org/10.1088/issn.0960-1317

    Article  Google Scholar 

  20. Lee, J.-H., Kim, A.: Structural and thermal characteristics of the fast-deposited parylene substrate for ultra-thin organic light emitting diodes. Org. Electron. 47, 147–151 (2017). https://doi.org/10.1016/j.orgel.2017.05.005

    Article  CAS  Google Scholar 

  21. Gorham, W.F.: A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polym. Sci. Pol. Chem. 4, 3027–3039 (1966). https://doi.org/10.1002/pol.1966.150041209

    Article  CAS  Google Scholar 

  22. Hwangbo, C.K., Lingg, L.J., Lehan, J.P., Macleod, H.A., Suits, F.: Reactive ion assisted deposition of aluminum oxynitride thin films. Appl. Opt. 28, 2779–2784 (1989). https://doi.org/10.1364/AO.28.002779

    Article  CAS  Google Scholar 

  23. Yun, S.J., Ko, Y.W., Lim, J.W.: Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 85, 4896–4898 (2004). https://doi.org/10.1063/1.1826238

    Article  CAS  Google Scholar 

  24. Lim, Y.-J., Lee, J.-H.: Ytterbium test for water vapor transmission rate measurement of passivation film for organic electronics. Appl. Chem. Eng. 29, 484–487 (2018). https://doi.org/10.14478/ace.2018.1030

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Collabo R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 2020 (S2737207), the research fund of Hanbat National University in 2016 and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03026005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoonseuk Choi or Jae-Hyun Lee.

Ethics declarations

Conflicts of interest

No known competing financial interests or personal relationships that could have appeared to influence the work is reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Akpeko Gasonoo and Jeong-Hwan Lee are equally contributed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasonoo, A., Lee, JH., Lim, YJ. et al. Parylene C-AlN Multilayered Thin-Film Passivation for Organic Light-Emitting Diode Using a Single Deposition Chamber. Electron. Mater. Lett. 16, 466–472 (2020). https://doi.org/10.1007/s13391-020-00236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00236-x

Keywords

Navigation