Skip to main content
Log in

Abstract

We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset \(\Omega \subset {\mathbb {R}}^N\) and a Banach space V, we compare the classical Sobolev space \(W^{1,p}(\Omega , V)\) with the so-called Sobolev–Reshetnyak space \(R^{1,p}(\Omega , V)\). We see that, in general, \(W^{1,p}(\Omega , V)\) is a closed subspace of \(R^{1,p}(\Omega , V)\). As a main result, we obtain that \(W^{1,p}(\Omega , V)=R^{1,p}(\Omega , V)\) if, and only if, the Banach space V has the Radon–Nikodým property

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, 2nd edn. Monographs in Mathematics, 96. Birkhäuser/Springer Basel AG, Basel (2011)

  2. Arendt, W., Kreuter, M.: Mapping theorems for Sobolev spaces of vector-valued functions. Stud. Math. 240, 275–299 (2018)

    Article  MathSciNet  Google Scholar 

  3. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI (2000)

  4. Diestel, J., Uhl, J.: Vector measures. With a foreword by B. J. Pettis. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977)

  5. Hajłasz, P.: Sobolev spaces on metric-measure spaces. Contemp. Math. 338, 173–218 (2003)

    Article  MathSciNet  Google Scholar 

  6. Hajłasz, P., Tyson, J.T.: Sobolev peano cubes. Mich. Math. J. 56, 687–702 (2008)

    Article  MathSciNet  Google Scholar 

  7. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    Article  MathSciNet  Google Scholar 

  8. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev spaces on metric measure spaces. An approach based on upper gradients. New Mathematical Monographs, 27. Cambridge University Press, Cambridge (2015)

  9. Kreuter, M.: Sobolev spaces of vector-valued functions. Master Thesis, Ulm University (2015)

  10. Reshetnyak, YuG: Sobolev classes of functions with values in a metric space. Sib. Math. J. 38, 567–583 (1997)

    Article  MathSciNet  Google Scholar 

  11. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for his/her interesting comments and suggestions, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Á. Jaramillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by Grant PGC2018-097286-B-I00 (Spain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caamaño, I., Jaramillo, J.Á., Prieto, Á. et al. Sobolev spaces of vector-valued functions. RACSAM 115, 19 (2021). https://doi.org/10.1007/s13398-020-00959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00959-4

Keywords

Mathematics Subject Classification

Navigation